1. Segmentation

On considère la table des segments suivante pour un processus P1 :

Index	Base	Limite
0	540	234
1	1254	128
2	54	328
3	2048	1024
4	976	200

Calculez les adresses physiques correspondant aux adresses logiques suivantes. Signalez éventuellement les erreurs de violation.

(0:128): (3:888):

(1:100): (4:100):

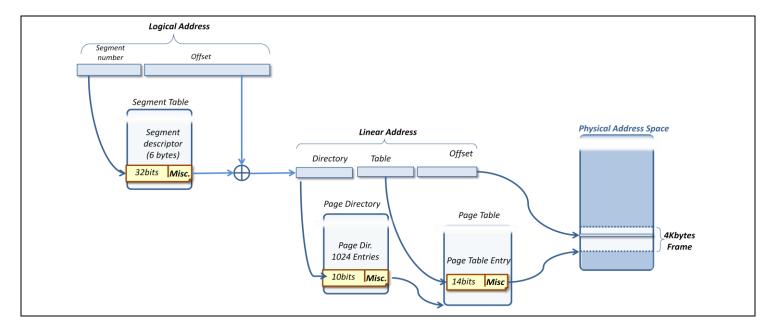
(2:465): (4:344):

2. Pagination

Dans un système paginé:

- Les pages ont une taille de 256 octets
- On autorise chaque processus à utiliser au plus 4 cadres
- Les adresses physiques sont codées sur 12 bits
- Les adresse virtuelles sont composées de 8 bits pour la page et 8 pour l'offset

On considère la table des pages suivante d'un processus P1 :


Page	0	1	2	3	4	5	6	7
Cadre	0011	0001	0000	0010	0100	0111	0101	0110
Présence	1	0	1	0	0	0	1	0

- Quelle est la taille de l'espace d'adressage du processus P1 ?
- De combien de mémoire vive dispose ce système ?
- Calculez les adresses réelles correspondant aux adresses virtuelles suivantes :
 - o **240**:
 - o **546**:
 - o **1761**:
 - o **2539**:
- Que se passe-t-il si P1 génère l'adresse virtuelle 783 ?

3. Gestion de mémoire dans un système d'exploitation

Soit un système de gestion de mémoire gérée de manière segmentée et paginée avec double niveau de pagination.

- La taille de la mémoire physique est de 64 Mo (1mot = 1 octet).
- Un processus peut avoir au plus 256 segments.
- Chaque segment peut adresser au plus 16 Mo.
- La taille d'une page est fixée à 4 ko.

1. Quel est le format des adresses logiques ? Expliquez.

- 2. Quel est le format d'une adresse physique ? Expliquez.
- 3. Quelle est la taille de l'espace d'adressage virtuelle

Soit un processus muni de la table des segments suivante :

Segment	Base	Limite
00	00 BE 0A 00	10 00
01	00 BE 23 D1	02 FF
02	00 BE 00 DA	03 61
03	00 BE 1A 26	05 07
04	00 BE OF FO	10 00

du répertoire de pages suivant :

Répertoire	Table	Active
0	0	1
1	3	0
2	1	1
3	2	0

Et de deux tables de pages :

N°	@Page	@Cadre	Active	Libre
0	2A0	23 40	1	0
1	2A1	05 BB	1	0
2	2A2	00 00	0	0
3	2A3	14 E0	1	0
4				1
		1 1 1 1	1 1 1 1	1
1023				1

N°	@Page	@Cadre	Active	Libre
0	3E0	00 00	0	0
1	3E1	27 FD	1	0
2	3E2	00 00	0	0
3	3E3	3A F6	1	0
4				1
		1 1 1 1	1 1 1 1	1
1023				1

Table 0

Table 1

4. Quelle est l'adresse linéaire correspondante à l'adresse logique 0x030000F0

5. Quel est le format d'une adresse linéaire ? Expliquez.

6. Quelle est l'adresse physique correspondante à l'adresse logique 0x0300F000

7. Quelle quantité de mémoire physique occupe le processus.