

Académie d'Aix-Marseille - Formation STI2D - Public MEI

Parcours ET22 :

Analyse temporelle et fréquencielle d'un système

Item 2.3.5 du programme :

Comportement informationnel des systèmes

Activité :

Analyse temporelle et fréquentielle de signaux sonores

Eléments de correction

Sommaire

1	But	But de l'activité						
2	Ins	tallatio	on et prise en main du logiciel	1				
	2.1	Télé	léchargement					
	2.2	Prise	e en main	1				
2.2.		2.1 Aspect temporel et spectral d'un signal simple						
	2.2	2.2	Filtrage	3				
3	Musique							
	3.1	La h	La hauteur					
	3.2	L'int	ntensité					
	3.3	Le ti	mbre	7				
4	Le	Le téléphone						
	4.1	Iden	dentification des touches du téléphone					
	4.2	La to	onalité de prise de ligne	8				
5	Tra	Traitement du son						
	5.1	Nett	toyage d'un signal parasité	9				
	5.2	Cryp	otage / décrytage du son sur Canal+	10				
	5.2	2.1	Principe	10				
	5.2	2.2	Mise en œuvre	10				
6	5 En savoir		plus	12				

1 But de l'activité

Le but de cette activité est de manipuler des signaux sonores et de se familiariser avec leurs aspects temporels et fréquentiels. Pour cela, on utilisera le logiciel gratuit *Audacity*.

2 Installation et prise en main du logiciel

2.1 Téléchargement

Téléchargez la dernière version du logiciel Audacity sur sourceforge :

http://audacity.sourceforge.net

Vous pouvez aussi télécharger les plugins *LADSPA* qui ajoutent un ensemble de fonctions de traitement audio supplémentaires à celles déjà présentes dans *Audacity*.

2.2 Prise en main

On trouve sur internet de nombreux sites et tutoriels dédiés à l'utilisation *d'Audacity*. On peut citer en particulier le tutoriel du *site du zéro* (<u>http://www.siteduzero.com/tutoriel-3-34572-audacity-prise-en-main.html</u>).

Afin de se familiariser avec le logiciel, nous allons effectuer des manipulations simples permettant de rappeler des notions de cours concernant l'analyse spectrale.

2.2.1 Aspect temporel et spectral d'un signal simple

Dans un nouveau projet *Audacity*, générez une nouvelle piste mono composant un son de forme sinusoïdal de fréquence 75Hz, d'amplitude 1 et de durée 2s.

A l'aide de la loupe, affichez et sélectionnez une période du signal. Mesurez sa durée (affichée en bas de l'écran, choisissez le mode de lecture approprié). Calculez sa fréquence et comparez-la au 75Hz demandé.

Jouez le son en cliquant sur bouton vert Lecture.

. . . Analyse de frée Affichez le spectre du signal en cliquant sur 0dE *Analyse -> Tracer le spectre*. Utilisez une -12dF -18dB fenêtre de Hanning (plus pertinente -30dB lorsque l'on veut une meilleur séparation -36dE -42dE des raies), une échelle de fréquence -48dE -54dE *logarithmique* et le maximum -66dE d'échantillons. -72dB 78dE -84dB 100Hz 200Hz 400Hz 3Hz 5Hz 10Hz 20Hz 40Hz 3000Hz 7000Hz 14 Hz (A#-1) = -97 dB Crête : 75 Hz (D2) = -0,1 dB ▼ Taile: 16384 -Exporter... Retracer Spectre Fonction Axe : Fréquence logarithmique Fermer Griles 🗸

Donnez les caractéristiques spectrales d'un signal sinusoïdal (nombre, fréquences et périodicité des raies).

Un signal sinusoïdal $s(t) = A \cdot \sin(2\pi f t)$ est composé d'une seule raie à la fréquence f et d'amplitude A.

Refaites les mêmes études pour les signaux de forme d'onde carré et dents de scies.

-0,20 -0,10 0,00 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80	0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.0
X Piste audio 1,0 Mono,44100Hz	
32 bits flottant 0,5- Muet Solo	
<u><u><u></u></u>-<u>0.5</u>-</u>	
Analyse de fréquence	
	Deie wie einele - Feudewenstel 275 Up
- 500 - 1208 - 1808	Rale principale : Fondamental a 75 Hz
-248B	Raies secondaires : Harmoniques
-36/8	• 1 · 225 Hz (2v75 Hz) → rang 2
	• 1.225 Hz $(5x75 Hz) = 7 \text{ rang 5}$ • 2 : 275 Hz $(5x75 Hz) = 8 \text{ rang 5}$
-60dB	• $3 \cdot 525 \text{ Hz} (7y75 \text{ Hz}) = 1 \text{ rang } 7$
-7248	• $3.323112(7775112) = 7101187$
-84dB	• 4.075112 (3X75112) -> Talig 5
Curseur : 18912 Hz (D10) = -113 dB Créte : 18975 Hz (D10) = -42,4 dB	•
Algorithme : Spectre Talle: 16384 Exporter Retracer Fonction : Hanning window Axe : Fréquence loganthmique Grilles V	Une raie tous les harmoniques de rang impair.
-0,20 -0,10 0,10 0.20 0,30 0.40 0.50 0.60 0.70 0.80 0.9	0 1.00 1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.90 2.00
× Piste audo ▼ 1,0 Mono,44100Hz 32 bis forbata 0,5-	
<u>е </u>	אי היה החוברים המשום משנה המשום היה אי היה היה היה היה היה היה היה היה
Analyze de fréquence	
	Deie grineinele - Fondementel > 75 Uz
-1206	Rale principale : Fondamental a 75 Hz
-2406	Raies secondaires : Harmoniques
-3009	• $1 : 150 \text{ Hz} (2x75 \text{ Hz}) => \text{ rang } 2$
-5408	• 2 · 225 Hz ($2x75$ Hz) => rang 2
-90/8	• $3 \cdot 300 \text{ Hz} (4x75 \text{ Hz}) => \text{ rang } A$
- 200- - 7808 -	• $4:375 H_7(5x75 H_7) => rang 5$
3Hz 5Hz 10Hz 20Hz 40Hz 100Hz 200Hz 400Hz 100Hz 3000Hz 7000Hz 1500Hz 1500Hz	
Curseur : 52 Hz (G#1) = -76 dB Crète : 75 Hz (02) = -4,0 dB	
Agorithme : Spectre Talle: 16384 Exporter Retracer Fonction : Hanning window Axe : Fréquence logarithmique Fermer Griles V	Une raie tous les harmoniques de rang impair.

2.2.2 Filtrage

Dans un nouveau projet, générez deux pistes mono composées de 2 sons sinusoïdaux d'amplitudes 0,2 et 0,8, et de fréquences respectives 100 Hz et 2 kHz pendant une durée de 2s.

Procédez à la lecture du son obtenu et à la lecture de chaque piste indépendamment l'une de l'autre (rendre une piste muette). Quelle est la fréquence la plus aigue ?

Sauvegardez le son généré dans un fichier wav (Fichier -> Exporter).

Ouvrez ce fichier, procédez à sa lecture et affichez le spectre. Vérifiez la présence de deux raies principales aux fréquences définies précédemment (modifiez éventuellement le nombre d'échantillons). Zoomez sur le signal temporel, observez sa forme.

On désire supprimer le sifflement haute-fréquence. Quel type de filtre faut-il utiliser ?

Il faut utiliser un filtre passe-bas qui élimine les fréquences supérieures à 200 Hz minimum.

Appliquez le filtre dessiné au signal en cliquant sur le bouton *OK*. Zoomez sur le signal et observez la forme obtenue. Affichez son spectre et vérifiez l'atténuation de la raie correspondant à la fréquence de 2 kHz.

3 Musique

Dans cette partie, nous allons essayer de montrer qu'il existe de grandes différences entre les notes jouées par différents instruments de musique, même si le nom donné à la note est le même.

Les quatre principaux attributs d'un signal sonore sont la *hauteur*, *l'intensité*, la *durée* et le *timbre*. On s'intéressera ici aux trois premiers paramètres.

3.1 La hauteur

Lorsque l'oreille humaine capte un son, le cerveau en extrait la hauteur (son plus ou moins aigu) en identifiant la fréquence du fondamental du signal.

Le nom de la note est alors donné conformément au tableau ci-dessous :

									-	
		Note\octave	1	1	2	3	4	5	3	7
		Do	32,70Hz	65,41Hz	130,81Hz	261,63Hz	523,25Hz	1046,50Hz	2093,00Hz	4186,01Hz
		Do#	34,65Hz	69,30Hz	138,59Hz	277,18Hz	554,37Hz	1108,73Hz	2217,46Hz	4434,92Hz
		Ré	36,71Hz	73,42Hz	146,83Hz	293,66Hz	587,33Hz	1174,66Hz	2349,32Hz	4698,64Hz
	Ré#	38,89Hz	77,78Hz	155,56Hz	311,13Hz	622,25Hz	1244,51Hz	2489,02Hz	4978,03Hz	
	1	Mi	41,20Hz	82,41Hz	164,81Hz	329,63Hz	659,26Hz	1318,51Hz	2637,02Hz	5274,04Hz
Référence : La ₃		Fa	43,65Hz	87,31Hz	174,61Hz	349,23Hz	698,46Hz	1396,91Hz	2793,83Hz	5587,65Hz
avec f = 440 Hz		Fa#	46,25Hz	92,50Hz	185,00Hz	369,99Hz	739,99Hz	1479,98Hz	2959,96Hz	5919,91Hz
		Sol	49,00Hz	98,00Hz	196,00Hz	392,00Hz	783,99Hz	1567,98Hz	3135,96Hz	6271,93Hz
		Sol#	51,91Hz	103,83Hz	207,65Hz	415,30Hz	830,61Hz	1661,22Hz	3322,44Hz	6644,88Hz
<u>n</u>	$_{n} = f_{0} \times (2^{\frac{n}{12}})$			110,00Hz	220,00	440,00Hz	880,00Hz	1760,00Hz	3520,00Hz	7040,00Hz
$f_n = f_0 \times (2^{12})$				116,54Hz	233,08Hz	466,16Hz	932,33Hz	1864,66Hz	3729,31Hz	7458,62Hz
(n est le nombre de	Si	61,74Hz	123,47Hz	246,94Hz	493,88Hz	987,77Hz	1975,53Hz	3951,07Hz	7902,13Hz	
au dessus de f $_0$)										
	f_0									

Ouvrez le fichier *la440_flute_trav.wav*, écoutez le, affichez son spectre. Donnez la fréquence du fondamental et identifiez la note jouée.

Faites de même pour le *fichier note_flute_trav.wav*.

Ouvrez le fichier morceau_flute_trav.wav et identifiez les notes qui le composent :

- Pour que les notes apparaissent plus clairement, on pourra faire une amplification du signal (*effets* -> *Amplification*).
- Sélectionnez une partie du signal et écoutez-la. Si vous n'entendez qu'une note, affichez son spectre pour l'identifier.
- Faites une copie-écran de la piste sonore, copiez-la dans votre compte-rendu et indiquez pour chaque partie du signal la note correspondante.

Affichez la hauteur de la piste (à gauche de la piste, petit triangle vers le bas). Lorsqu'un son est grave, sa hauteur est-elle haute ou basse ? Même question pour un son aigu.

3.2 L'intensité

L'intensité sonore ou amplitude est une autre caractéristique importante d'un son. La pression sonore perçue dépend (entre autres) de l'amplitude et correspond dans l'air aux variations de pression de l'onde. Le son peut être fort ou doux (les musiciens disent forte ou piano).

Ouvrez le ficher *percussions.wav*, écoutez le et notez la différence entre la première percussion et les suivantes. Pour chaque percussion, affichez le spectre et notez l'amplitude maximale (faites une copieécran de la piste sonore, copiez-la dans votre compte-rendu et indiquez pour chaque percussion son amplitude maximale).

3.3 Le timbre

Lorsque deux instruments différents jouent la même note, avec la même intensité et la même durée, l'oreille perçoit toujours des différences. Ces différences sont une caractéristique d'un instrument. Elles sont visibles sur les représentations temporelles (forme d'onde) et fréquentielles (amplitude des harmoniques) du son joué.

On s'intéresse ici à la différence de timbre entre un instrument à corde et un instrument à vent.

Ouvrez en concordance les fichiers *la440_flute_trav.wav* et *la440_violon.wav*. Ecoutes ces deux notes indépendamment l'une de l'autre. Vous paraissent-elles identique ? Vérifiez en relevant la fréquence de leur fondamental sur leur spectre.

Sur la représentation temporelle, donnez la principale différence entre ces deux signaux.

Confirmez votre hypothèse à l'aide des représentations spectrales des deux notes.

Le son produit par le violon est plus complexe donc plus riche en harmoniques. On distingue en effet sur les spectres la présence plus nombreuse de raies significatives pour le violon dans les hautes fréquences.

4 Le téléphone

4.1 Identification des touches du téléphone

La plupart des téléphones sont dits « à fréquences vocales », c'est-à-dire que chaque touche de son clavier émet un son différent. Ces sons sont conformes au codage DTMF (Dual Tone Multi Frequency).

Un son DTMF est composé de la superposition de deux signaux sinusoïdaux de fréquences différentes.

Audacity permet de générer des séquences DTMF. Générez la séquence 0123456789 et relevez les fréquences composant chaque chiffre.

De combien de fréquences différentes est constitué le codage DTMF ?

Ouvrez le fichier telephone.wav et identifier le numéro composé.

4.2 La tonalité de prise de ligne

On désire connaitre la note de musique entendue lorsqu'on décroche le téléphone d'une installation domestique courante.

Enregistrez 2 secondes du son délivré par un téléphone décroché auquel on aura mis en service la fonction « haut parleur ».

Si nécessaire, procédez au nettoyage de l'enregistrement en réduisant le bruit :

- Sélectionnez une zone de silence (enregistrement du bruit seul).
- Cliquez sur effets -> Réduction du bruit
- Cliquez sur Prendre le profil du bruit.
- Sélectionnez tout l'enregistrement.
- Cliquez sur effets -> Réduction du bruit
- Réglez la réduction du bruit à 10 dB (plus ou moins, faites une prévisualisation) et cliquez sur OK.

Affichez le spectre et identifiez la note. Peut-on dire qu'il s'agit d'un son « pure » ?

5 Traitement du son

5.1 Nettoyage d'un signal parasité

Lors d'un enregistrement audio en extérieur, un sifflement strident est apparu, rendant la fin d'un discours inaudible.

On désir traiter cet enregistrement à l'aide d'un filtre permettant si possible de retrouver le discours original non parasité.

Ouvrez le fichier *discours_bruite.wav* et écoutez-le.

Identifiez la nature du signal parasite. Vérifiez en affichant son spectre.

Proposez un filtre permettant d'éliminer ce parasite, tout en déformant au minimum le discours original.

5.2 Cryptage / décrytage du son sur Canal+

5.2.1 Principe

La méthode de cryptage du son employée dans le système de codage Canal+ consiste en une inversion du spectre autour de 12.8 kHz par modulation d'amplitude.

Le spectre d'un signal audible s'étend jusqu'à 20 kHz. Pour qu'il n'y ait pas de recouvrement des 2 spectres translatés par la modulation, on procède d'abord à un filtrage passe bas (dont la fréquence de coupure est choisie précisément à 12.8 kHz) du signal original.

5.2.2 Mise en œuvre

Audacity possède un langage de script, le langage Nyquist.

Nyquist est conçu pour travailler sur des sons, et possède donc de nombreuses primitives intégrées et fonctions qui synthétisent, analysent et manipulent des données audio. Dans Audacity, il est ainsi aisé de construire des effets complexes à partir de l'ensemble des fonctions de base de Nyquist.

Pour accéder à l'invite de commande Nyquist dans Audacity, cliquez sur *Effets -> Console Nyquist*. La zone sélectionnée est placée dans la variable s et sera remplacée par le résultat de l'expression Nyquist que vous avez saisi.

Les fonctions suivantes créent de nouveaux sons :

- (noise) Génère un bruit blanc
- (const value [duration]) Génère un signal constant (silence)
 - (*sine pitch [duration]*) Génère un son pur à la fréquence (pitch) et durée (duration).
- (*hzosc* [*hz*]) Génère un son pur en indiquant la fréquence en hz.

•

•

(osc-saw [hz])
 Génère un signal en dent de scie à la fréquence hz indiquée en hz.
 Génère un signal triangulaire à la fréquence hz indiquée en Hz.

Les fonctions suivantes créent des combinaisons de sons :

- *mult* Multiplier deux sons
 - add Additionner deux sons

Les fonctions suivantes créent des filtres intégrés :

•

- (*lp sound cutoff*) Filter passe-bas (Butterworth 1° ordre).
 - (*hp sound cutoff*) Filter passe-haut (Butterworth 1° ordre).

Ouvrez le fichier *canal.wav*, écoutez-le et observez son spectre. Cet enregistrement de canal+ est crypté, nous allons le décrypter. Pour cela, il suffira de procéder de la même manière que pour le crypter, c'est-à-dire en procédant à une modulation d'amplitude de l'enregistrement crypté.

Utilisez la console Nyquist pour moduler l'enregistrement et le filtrer afin de le rendre audible.

(mult s (hzosc 12800)) : multiplication du signal crypté par un signal sinusoïdal de fréquence 12,8kHz

6 En savoir plus

http://audacity.sourceforge.net/help/documentation http://tcts.fpms.ac.be/cours/1005-03/syllabus.html