
Development Kit
For the PIC® MCU

Exercise Book

DSP Analog

dsPIC33FJ128GP706
March 2010

PIC®MCU and dsPIC®DSC are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

Copyright © 2010 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.

Inventory
 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must

have a spare 9-Pin Serial or USB port, a CD-ROM drive and 75 MB of disk space.

 The diagram on the following page shows each component in the DSP Analog kit.
Ensure every item is present.

Software
 Insert the CD into the computer and wait for the installation program to start. If your computer

is not set up to auto-run CDs, then select My Computer and double-click on the CD drive.

 Click on Install and use the default settings for all subsequent prompts by clicking NEXT,
OK, CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will have
created an empty directory c:\program fi les\picc\projects that may be used for this purpose.

 Select the compiler icon on the desktop. In the PCW IDE, click Help>About and verify
a version number is shown for the IDE and PCD to ensure the software was installed
properly. Exit the software.

Hardware
 Connect the PC to the ICD(6) using the USB cable.(1) Connect the prototyping board (10) to

the ICD using the modular cable. Plug in the DC adaptor (9) to the power socket and plug
it into the prototyping board (10). The fi rst time the ICD-U is connected to the PC, Windows
will detect new hardware. Install the USB driver from the CD or website using the new
hardware wizard. The driver needs to be installed properly before the device can be used.

 The LED should be red(2) on the ICD-U to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the desktop.
Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LCD should be
illuminated green. If any errors are detected, go to Diagnostic tab. If all tests pass, the
hardware is installed properly.

 Disconnect the hardware until you are ready for Chapter 3. Always disconnect the power
to the Prototyping board before connecting/disconnecting the ICD or changing the
jumper wires to the Prototyping board.

(1) ICS-S40 can also be used in place of ICD-U. Connect it to an available serial port on the PC using the 9
pin serial cable. There is no driver required for S40.

CCS, Inc.

UNPACKING AND INSTALLATION1

(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

1 Storage box
2 Exercise booklet
3 CD-ROM of C compiler (optional)
4 Serial PC to Prototyping board cable
5 Modular ICD to Prototyping board cable
6 ICD unit for programming and debugging
7 USB (or Serial) PC to ICD cable

 8 DSP Analog Prototyping Board with the dsPIC33FJ128GP706
 (See inside front and back cover for details on the board layout and schematic)
 9 AC Adaptor (9VDC)

dsPIC33FJ128GP706 Exercise Book

ICD-U64

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: c:\program fi les\picc\examples\ex_
stwt.c

 Scroll down to the bottom of this fi le. Notice the editor shows comments, preprocessor
directives and C keywords in different colors.

 Move the cursor over the Set_timer1 and click. Press the F1 key. Notice a Help fi le
description for set_timer1 appears. The cursor may be placed on any keyword or built-in
function and F1 will fi nd help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various standard
cut, paste and copy functions.

 Review the editor option settings by clicking on Options>Editor Properties. The IDE
allows selection of the tab size, editor colors, fonts, and many more. Click on Options>T
oolbar>Keyboard>Customize/Setup to select which icons appear on the toolbars.

Compiler
 Use the white box on the toolbar to select the compiler. CCS offers different compilers

for each family of Microchip parts. All the exercises in this booklet are for the
dsPIC33FJ128GP706 chip, a 24-bit opcode part. Make sure PCD 24-bit is selected in
the white box.

 The main program compiled is always shown in the lower right corner of the IDE. If this is
not the fi le you want to compile, then click on the tab of the fi le you want to compile. Right
click into editor and select Make fi le project.

 Click Options>Project Options>Global Defi nes and review the list of directories
the compiler uses to search for included fi les. The install program should have put two
directories in this list: devices and drivers

 Normally the fi le formats need not be changed and global defi nes are not used in these
exercises. To review these settings, click Options>Project Options>Output Files and
Options>Project Options>Global Defi nes.

 Click the compile icon to compile. Notice the compilation box shows the fi les created
and the amount of ROM and RAM used by this program. Compilation box will close
automatically when done compiling.

CCS, Inc.

USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)2

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the microcontroller

is used. Identifiers that start with @ are compiler generated variables. Notice some
locations are used by more than one item. This is because those variables are not
active at the same time.

 Click Compile>C/ASM List. This file shows the original C code and the assembly
code generated for the C. Scroll down to the line:
 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 64 into the WO
register. INTS_PER_SECOND is #defined in the file to 100. 64 hex is 100 decimal.
The second instruction moves WO into a memory location. Switch to the Symbol
Map to find the memory location where int_count is located.

 Click View>Data Sheet, then View. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files and Projects are created,
opened, or closed using this menu.

Place cursor here for slide out boxes.
All of the current project’s source and
output files can be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using
this menu.

Compiles current selected unit, does NOT link/build
into a HEX file.

Quick view of supported devices.

Compiles all units that have changed since last build,
links/builds into a HEX file.

Compiles all units regardless if they have changed since
last build, links/builds into a HEX file.

dsPIC33FJ128GP706 Exercise Book

CCS, Inc.

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>New>Source File and enter the fi lename EX3.C

 Type in the following program and Compile.

3 COMPILING AND
RUNNING A PROGRAM

#include <33fj128gp706.h>
#device ICD=TRUE
#fuses HS, NOWDT, NOCOE, PR
#use delay(clock=12000000)

#define GREEN_LED PIN_C14
void main () {
 while (TRUE) {
 output_low (GREEN_LED);
 delay_ms (1000);
 output_high (GREEN_LED);
 delay_ms (1000);
 }
}

N
O

T
E

S The first four lines of this program define the basic hardware environ-
ment. The chip being used is the dsPIC33FJ128GP706, running at
12 MHz with the ICD debugger.

 The #defi ne is used to enhance readability by referring to
GREEN_LED in the program instead of PIN_C14.

 The “while (TRUE)” is a simple way to create a loop that never stops.

 The “delay_ms(1000)” is a one second delay (1000 milliseconds).

dsPIC33FJ128GP706 Exercise Book

 Connect the ICD to the Prototyping board using the modular cable, and connect the ICD to
the PC. Power up the Prototyping board.

 Click Debug>Enable Debugger and wait for the program to load.

 If you are using the ICD-U40 and the debugger cannot communicate to the ICD unit go to
the debug configure tab and make sure ICD-USB from the list box is selected.

 Click the green go icon:

 Expect the debugger window status block to turn yellow indicating the program is running.

 The green LED on the Prototyping board should be flashing. One second on and one
second off.

 The program can be stopped by clicking on the stop icon:

 Modify the program to light the green LED for 5 seconds, then the yellow for
1 second and the red for 5 seconds.

 Add to the program a #define macro called “delay_seconds” so the
delay_ms(1000) can be replaced with : delay_seconds(1); and
delay_ms(5000) can be: delay_seconds(5);.

Note: Name these new programs EX3A.c and EX3B.c and follow the same
 naming convention throughout this booklet.

A

B

FURTHER STUDY

ICD-U64

 Type in the following program, named EX4.C, Compile and Run: Type in the following program, named EX4.C, Compile and Run

#include <33fj128gp706.h>
#device ICD=TRUE
#fuses HS, NOWDT, NOCOE, PR
#use delay(clock=12000000)

#defi ne GREEN_LED PIN_C14
#defi ne YELLOW_LED PIN_G9
#defi ne RED_LED PIN_C2
#defi ne PUSH_BUTTON PIN_B2
//
light_one_led(int led) {
 output_low(GREEN_LED);
 output_low(YELLOW_LED);
 output_low(RED_LED);
 switch(led) {
 case 0 : output_high(GREEN_LED); break;
 case 1 : output_high(YELLOW_LED); break;
 case 2 : output_high(RED_LED); break;
 }
}
wait_for_one_press() {
 while(input(PUSH_BUTTON)) ;
 while(!input(PUSH_BUTTON)) ;
}
void main() {
 while(TRUE) {
 light_one_led(0);
 wait_for_one_press();
 light_one_led(1);
 wait_for_one_press();
 light_one_led(2);
 wait_for_one_press();
 }
}

 Click Compiler.
 Click GO in Debugger Window
 The green LED should come on. Press the top button and the yellow LED should light

and then the red LED when pressed again. Add the following new typebelow the // lines:
typedef enum {GREEN,YELLOW,RED} colors;

CCS, Inc.

HANDLING INPUT4

 Change the parameter to light_one_led to colors instead of int.
 Change the 0, 1, 2 in the call to GREEN, YELLOW, RED.

N
O

T
E

S

 The Prototyping board has one momentary push-button that may be
used as an input to the program. The input pin is connected to a 4.7K
pull-up resistor to +5V. The button, when pressed, shorts the input pin
to ground. The pin is normally high while in this confi guration, but it is
low while the button is pressed.

 This program shows how to use simple C functions. The function
wait_for_one_press() will fi rst get stuck in a loop while the input pin
is high (not pressed). It then waits in another loop while the pin is low.
The function returns as soon as the pin goes high again. Note that
the loops, since they do not do anything while waiting, do not look like
much-they are a simple ; (do nothing).

 When the button is pressed once, it is common for several very quick
connect disconnect cycles to occur. This can cause the LEDs to
advance more than once for each press. A simple debounce
algorithm can fi x the problem. Add the following line between the two
while loops: delay_ms(100); The following scope picture of a button
press depicts the problem:

 Modify the program so that while the button is held down the LEDs alternate
as fast as possible. When the button is not pressed the LED state freezes.
This creates a random color program.

A

FURTHER STUDY

dsPIC33FJ128GP706 Exercise Book

CCS, Inc.

 Close all fi les and start a new fi le named EX5.C as follows:

PROGRAM STRUCTURE5
 It is good practice to put all the hardware defi nitions for a given design into a common

fi le that can be reused by all programs for that board. Open EX4.C and drag the cursor
over (highlight) the fi rst 9 lines of the fi le. Click Edit>Paste to fi le and give it the name
prototype.h.

 It is also helpful to collect a library of utility functions to use as needed for future programs.
Note that just because a function is part of a program does not mean it takes up memory.
The compiler deletes functions that are not used. Highlight the wait_for_one_press()
function, light_one_led function and the typedef line (if added from Chapter 4 Notes
section) and save as a new fi le named utility.c. Open utility.c and add the following new
function to the fi le:

show_binary_on_leds(int n) {
 output_low(GREEN_LED);
 output_low(YELLOW_LED);
 output_low(RED_LED);
 if(bit_test(n,0))
 output_high(GREEN_LED);
 if(bit_test(n,1))
 output_high(YELLOW_LED);
 if(bit_test(n,2))
 output_high(RED_LED);
}

#include <prototype.h>
#include <utility.c>
void main() {
 int count = 0;
 while(TRUE) {
 show_binary_on_leds(count);
 wait_for_one_press();
 count++;
 }
}

dsPIC33FJ128GP706 Exercise Book

 Compile and Run the program. Check that
with each button press, the LEDs increment
in a binary number 0-7 as shown here.

Where it is defi ned Can be accessed Life of the variable
Inside a function Only in that function While function is alive
Inside a function with
STATIC Only in that function During the entire run of

the program

Outside all functions In any function defi ned
afterwards in the fi le

During the entire run of
the program

After “{“ inside a
function

Only between the “{“
and corresponding “}”

Only up to the
corresponding “}”

N
O

T
E

S

 In C, a function must either appear in the input stream before it is used
OR it must have a prototype. A prototype is the part of the function
defi nition before the “{“. In a program where main calls function A and
function A calls function B, the order in the fi le must be B, A, MAIN.
As an alternative, have Ap, Bp, MAIN, A, B where Ap and Bp are
prototypes. Frequently, prototypes are put into a header fi le with a .h
extension.

 The scope, initialization, and life of C variables depend on where and
how they are declared. The following is a non-inclusive summary of the
common variable scopes. Note that if a variable has an initialization (like
int a=1;) the assignment happens each time the variable comes to life.

Modify the program to increment the binary number 1 every second
(the button is not used).
Instead of the built-in function BIT_TEST use the standard C operators
(such as & and ==) to test the bits.

A

B

FURTHER STUDY

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

CCS, Inc.

6 DEBUGGING

 Open EX5.C and start the debugger Debug>Enable Debugger.

 Click the reset icon to ensure the target is ready.

 Click the step-over icon twice. This is the step over command. Each click causes a
line of C code to be executed. The highlighted line has not been executed, but is the next
line to be executed.

 Step over the show _ binary _ on _ leds(count); line and notice that one click
executed the entire function. This is the way step over works. Click step over on
wait _ for _ one _ press();. Press the prototype button and notice the debugger
now stops since the function terminates.

 Click the Watches tab, then the add icon to add a watch. Enter count or choose
count the variables from list, then click Add Watch. Notice the value shown. Continue
to step over through the loop a few more times (press the button as required) and notice
the count watch increments.

 Step over until the call to show _ binary _ on _ leds(count); is highlighted. This
time, instead of step over, use the standard step icon several times and notice the
debugger is now stepping into the function.

 Click the GO icon to allow the program to run. Press the prototype button a couple
of times to verify that the program is running normally. Click the stop icon to halt
execution. Notice the C source line that the program stopped on. This is the line were the
program is waiting for a button press.

 In the editor, click on show _ binary _ on _ leds(count); to move the editor cursor
to that line. Then click the Breaks tab and click the add icon to set a breakpoint. The
debugger will now stop every time that line is reached in the code. Click the GO icon
and then press the prototype button. The debugger should now stop on the breakpoint.
Repeat this a couple of times to see how the breakpoint works.

 Click Compile>C/ASM list. Scroll down to the highlighted line. Notice that one assembly
instruction was already executed for the next line. This is another side effect of the ICD
debugger. Sometimes breakpoints slip by one ASM instruction.

 Click the step over icon a few times and note that when the list fi le is the selected
window, the debugger has executed one assembly instruction per click instead of one
entire C line.

 Close all fi les and start a new fi le EX6.C as follows:

dsPIC33FJ128GP706 Exercise Book

 Compile the program and step-over until the c=a+b is executed. Add a watch for c and
the expected value is 16.

 Step-over the subtraction and notice the value of c. The int data type by default is
signed, so c will be the expected –6. The modular arithmetic works like a car odometer
when the car is in reverse only in binary. For example, 00000001 minus 1 is 00000000,
subtract another 1 and you get 11111111. When using signed binary a 1 in the most
signifi cant bit signifi es that the number is negative. Therefore, 11111010 represents -6

 Reset and again step up to the c=a+b. Click the Eval tab. This pane allows a one time
expression evaluation. Type in a+b and click Eval to see the debugger and calculate the
result. The complete expression may also be put in the watch pane as well. Now enter
b=10 and click Eval. This expression will actually change the value of B if the “keep side
effects” check box of the evaluation tab is checked. Check it and click Eval again. Step
over the addition line and click the Watches tab to observe the c value was calculated
with the new value of b.

#include <prototype.h>

void main() {
 int8 a,b,c;

 a=11;
 b=5;
 c=a+b;
 c=b-a;
 while(TRUE);
}

Modify the program to include the following C operators to see how they work:
* / % & ^
Then, with b=2 try these operators: >> <<
Finally, try the unary complement operator with: c=~a;
Design a program to test the results of the relational operators:
< > = = !=
by exercising them with b as 10, 11, and 12.
Then, try the logical operators || and && with the four combinations of a=0,1
and b=0,1.
Finally, try the unary not operator with: c=!a; when a is 0 and 1.

A

B

FURTHER STUDY

CCS, Inc.

 The example in chapter 5 always begins counting at 0, but in some applications, the
ability to remember past a power cycle is necessary. EEPROM is used for this purpose.
The microcontroller on this board does not have internal EEPROM, so to save long term
data, an AT25256A external EEPROM is used.

 Click File>New>Source File and name the fi le EX7.C

7 STAND-ALONE PROGRAMS AND
EXTERNAL EEPROM

#include <prototype.h>
#include <utility.c>

#defi ne EEPROM_SELECT PIN_D9
#defi ne EEPROM_DI PIN_F2
#defi ne EEPROM_DO PIN_F3
#defi ne EEPROM_CLK PIN_F6
#include <at25256.c>

#defi ne EEPROM_ADDR 0x002

void main()
{
 unsigned int8 count = 0;

 init_ext_eeprom();
 count = read_ext_eeprom(EEPROM_ADDR);

 while(1)
 {
 show_binary_on_leds(count);
 wait_for_one_press();
 count++;
 write_ext_eeprom(EEPROM_ADDR, count);
 }
}

 Click Compiler and Run the program from within debugger window. Verify that when the
program is halted, reset and restarted that the count continues where it left off.

 Close the debug window.
 Copy the prototype.h fi le to a new fi le called protoalone.h. Remove from this fi le the line:
 #device ICD=TRUE

 This makes a program that uses the new include fi le a stand alone program which does
not need the ICD to run.

 Modify EX7.C to use protoalone.h. Compile the program, then click Tools>CCSLOAD to
load the program onto the Prototyping board.

dsPIC33FJ128GP706 Exercise Book

 Disconnect the power from the Prototyping board, then disconnect the ICD from the
Prototyping board.

 Power up only the Prototyping board and verify the program runs correctly.
 Press the reset button on the Prototyping board and release. The LEDs should go off

while in reset, then the program will restart.while in reset, then the program will restart.while in reset, then the program will restart.

N
O

T
E

S

 The AT25256 uses SPI, a common 3 or 4 wire protocol. The protocol uses
two data lines for full duplex communication. One is outgoing data (SDO)
and the other is incoming (SDI) The name of the data line is given with
respect to the current device; this means that the microcontroller’s SDO
is sending the data to the EEPROM, which receives the data on its SDI.
A third line clocks the serial data on both the SDI and SDO, and is gener-
ated by the master device.

 An optional fourth line called a chip select may be used. This allows multiple
slaves to utilize the same physical bus. When the master device wishes to
communicate with a particular slave, it drives the chip select low to enable
the slave. Each slave requires an independent chip select.

 There is a limit as to how many times a given location in the data EE-
PROM can be written to. For this reason, a program should be designed
not to write any more often than necessary. For example, one might wait
until there are no changes to a system setting for 5 seconds before saving
a new value to EEPROM. Some system designs can give early warn-
ing on power down and the program can only save to EEPROM at power
down.

Modify the EX7.c program so that 10 EEPROM locations are used and each
time the button is pressed only one of the 10 locations is written to and the
location changes with each press. This will extend the life of this unit by 10
times, if it were a real product.

 Hint: The count value could be the sum of all 10 locations %8.

A
FURTHER STUDY

 Digital signal processors process analog signals that have been digitized. An Analog to
Digital Converter (ADC) is a device that digitizes the signal from an analog source. Many
microcontrollers now integrate ADC’s.

LCD displays are a common way of displaying textual and increasingly, graphical data.
CCS provides a driver library for easy use of most standard alpha-numeric displays

 Click File > New > Source File and name the fi le EX8.C

 Type in the following code:

#include <protoalone.h>

#defi ne LCD_RS_PIN PIN_D1
#defi ne LCD_RW_PIN PIN_D2
#defi ne LCD_ENABLE_PIN PIN_D3

#include <lcd.c>

#defi ne BOTTOM_POT_PORT sAN9
#defi ne BOTTOM_POT_CHANNEL 9

#defi ne TOP_POT_PORT sAN8
#defi ne TOP_POT_CHANNEL 8

void main(){
 unsigned int16 adc1 = 0;
 unsigned int16 adc2 = 0;

 lcd_init();
 setup_adc_ports(BOTTOM_POT_PORT);
 setup_adc_ports2(TOP_POT_PORT);

 setup_adc(ADC_CLOCK_INTERNAL);
 setup_adc2(ADC_CLOCK_INTERNAL);

 set_adc_channel(BOTTOM_POT_CHANNEL);
 set_adc_channel2(TOP_POT_CHANNEL);

CCS, Inc.

ANALOG TO DIGITAL CONVERSION
AND LIQUID CRYSTAL DISPLAYS8

(continued...)

dsPIC33FJ128GP706 Exercise Book

 Compile the program, then click Tools>ICD to load the program onto the Prototyping
board.

 Turn the top and bottom pots and verify that the LCD updates with the new ADC readings.

N
O

T
E

S

 A delay between LCD updates is necessary or the LCD will update too
quickly, and the refresh lines will blank out the text. A delay of 100 ms or
more is recommended.

 The ADC output is left aligned; this means that even though the output of
the ADC is 10 bits, if a 16 bit variable is used, the value left in the variable
will be shifted to the right 6 bits. This makes 64 the smallest interval be-
tween ADC readings. In this format, the range of possible values stretches
from 0 to 65535, but only 10 bits of resolution exist.

 If wanting to use the ADC in an 8 bit mode, use #device adc=8 at the
beginning of code.

 ‘\f’ clears the LCD and ‘\n’ writes a new line.

Read both potentiometers with a single ADC module. OR together both ports
in setup _ adc _ ports() and change the channel between readings with
set _ adc _ channel(). Make sure to pause at least 15 us between setting
and reading the channel.
Use the LCD to display which buttons are currently depressed. Find the
button state with input() and use %u in printf() to output the state.

A

B

FURTHER STUDY

 while(TRUE){
 adc1 = read_adc();
 adc2 = read_adc2();

 printf(LCD_PUTC, “\fTop Pot=%lu\nBottom Pot=%lu”,adc2,adc1);
 delay_ms(100);
 }
}

(...continued)

CCS, Inc.

AUDIO CODEC9
 A primary feature of this development kit is the ability to generate tones and other

sounds while driving speakers and headphones.

A codec chip provides hardware support for multimedia tasks, generally audio or video.
Using a codec chip can signifi cantly reduce the load on the microprocessor, but at the
expense of an additional hardware package.
The TLV320 codec chip is an audio ADC and DAC (Digital to Analog Converter) that can
sample incoming signals with 32 bit resolution at 96 kHz; allowing high fi delity sound
to be sampled, digitized, processed and reproduced. It connects to the microcontroller
through two separate interfaces. A control interface utilizes SPI, a three or four wire
interface, to confi gure the codec. A second interface communicates with the audio
module through a protocol called Multichannel.
The TLV320 codec has the capability for several transmission protocols. In this device,
the Multichannel protocol is used. The Multichannel Protocol allows for left and right
channel (stereo) sound to be transmitted over 4 lines. Multichannel, like many other
PCM protocols, divide their transmissions into frames. Each frame is representative of a
single sample. The data is in a 2’s complement, signed integer (of the same size as your
sample size) format. The clock signal that accompanies the data clocks in individual bits
on its rising edge.

 Click File>New>Source File and name the fi le EX9.C

 Type the following code to demonstrate the use of the codec to sample and record sound
with a microphone and loop it back out to a headphone output.

 WARNING: Do not wear headphones directly over your ears, or use large, amplifi ed
outputs for these examples. Some examples, depending on default settings or settings
you have changed, will probably be uncomfortably or even dangerously loud.

 For the examples presented in this booklet and for you own experimentation, we suggest
that you use inexpensive headphones or speakers. During your experimentation, you
may generate signals that are harmful to audio equipment.

 In general, you should avoid signals that:

· Have sharp points or quickly change such as some saw-tooth wave forms and
 square waveforms; these signals may be dangerous to both your hearing and your
 equipment.
· Signals that are in a frequency range beyond the range of your device. Generally,
 staying within the human hearing range (20-20,000 Hz) will ensure the equipment’s
 safety.

dsPIC33FJ128GP706 Exercise Book

#include <protoalone.h>
#include <TLV320AIC23B.c>

void main()
{
 signed int16 leftChannel = 0x0000;
 signed int16 rightChannel = 0x0000;

 delay_ms(600);

 setup_dci((MULTICHANNEL_MODE | MULTI_DEVICE_BUS | UNDERFLOW_LAST
 | DCI_SLAVE |DCI_CLOCK_INPUT | SAMPLE_RISING_EDGE),
 DCI_2WORD_FRAME | DCI_16BIT_WORD | DCI_2WORD_INTERRUPT,
 RECEIVE_SLOT0 | RECEIVE_SLOT1, TRANSMIT_SLOT0 |
 TRANSMIT_SLOT1, 0);

 dci_start();

 codec_initialize();
 codec_setup_analog_path(DAC_SELECT | ADC_MIC_INPUT);
 codec_setup_hp_output(HP_NO_GAIN, HP_NO_GAIN);

 while(TRUE){
 codec_read_data16(&leftChannel, &rightChannel);
 codec_write_data16(&leftChannel, &rightChannel);
 }
}

 Connect a microphone to J8 and a speaker to J7.

 Click Compile and then click Tools>ICD to load the program

 Verify that the microphone loops sound to the speaker.

CCS, Inc.

9 AUDIO CODEC (CONT.)

Use codec _ setup _ analog _ path(DAC _ SELECT) and codec _ setup _
line _ input(…) to utilize the Line Input instead of the microphone to loop stereo
sound.
Note: The microphone cannot be connected to Line Input because it does not
produce a Line Output. Line Outputs are common on CD players and sound cards.
Generate a triangular waveform by incrementing and ouput using codec _ write _
data16()

Negate one audio channel when a button is depressed passing a dummy variable to
one parameter codec_write_data16(...).

A

B

C

FURTHER STUDY

N
O

T
E

S

 The clock is generally clocking a data in and data out line, however
depending on the application circuit, one of these may not be present
(if the device is only recording, or only reproducing sound). The fi nal
signal is a frame sync signal. This signal outputs a pulse at the se-
lected sampling frequency. Data is transmitted and/or received 1 clock
cycle after the rising edge of the frame sync.

 codec _ setup _ analog _ path() sets up the internal pathway
sound data is obtained from. By default, sound is sampled from the
Line input. If you wish to obtain audio data from this source, leave out
the ADC_MIC_INPUT argument.

 Because a microphone is a mono audio source, the codec sends the
same values for both the left and right channel.

dsPIC33FJ128GP706 Exercise Book

Pulse code modulation (PCM) is the most common way to convey raw sound data. Raw
samples of the signal are taken in the time domain, or sequentially. The sample values
represent the displacement of the signal, or the sound pressure at a given point in time.
PCM is popular because it is the raw output of a sampling device like an ADC and it is the
direct input to a reconstruction device like a DAC.
Many codec chips provide means to obtain and output PCM data. Other codecs may
also include digital fi lters that refi ne the signals. Others still may even include hardware to
decode popular compression formats like .mp3.
Several chips in the dsPIC family have an on-chip peripheral that supports buffered
transmission of PCM data. This peripheral is called the Data Converter Interface or DCI.

 Click File>New and name the fi le EX10.C
 Type in the following code that creates a table of values that represent a sine wave

encoded as PCM data.

10 PULSE CODE MODULATION

(continued...)

encoded as PCM data.

(continued...)

#include <33FJ128GP706.h>
#fuses HS, NOWDT, NOCOE, NODEBUG, PR
#use delay(clock=12000000)

#include <math.h>
#include <TLV320AIC23B.c>

#defi ne PCM_TABLE_SIZE 256
unsigned int8 pcm_pos;
signed int16 pcm_table[PCM_TABLE_SIZE];
const fl oat INCREMENT = ((2*PI)/PCM_TABLE_SIZE);

signed int16 leftChannel = 0x0000;
signed int16 rightChannel = 0x0000;

void main(){
 unsigned int8 i;
 pcm_pos = 0;

 for(i = 0; i < 255; i++){
 pcm_table[i] = 127 * sin(INCREMENT * i) + 128;
 }
 //make sure to init i = 255
 pcm_table[i] = 127 * sin(INCREMENT * i) + 128;

 delay_ms(600);

CCS, Inc.

(...continued)

 Click Compile and then click Tools>ICD to load the program
 Connect a speaker to J7 and verify the output is a steady tone.

10 PULSE CODE MODULATION (CONT.)

 //Starting the DCI peripheral

 setup_dci((MULTICHANNEL_MODE | MULTI_DEVICE_BUS | UNDERFLOW_LAST |
 DCI_SLAVE | DCI_CLOCK_INPUT | SAMPLE_RISING_EDGE),
 DCI_2WORD_FRAME | DCI_16BIT_WORD | DCI_2WORD_INTERRUPT,
 RECEIVE_SLOT0 | RECEIVE_SLOT1, TRANSMIT_SLOT0 | TRANS-
MIT_SLOT1,0);

 dci_start();

 //Initializing the Codec
 codec_initialize();

 //Setting the timer interrupt
 setup_timer1(TMR_INTERNAL | TMR_DIV_BY_8, 10);
 enable_interrupts(INT_TIMER1);
 enable_interrupts(INTR_GLOBAL);

 while(TRUE){
 codec_write_data16(&leftChannel, &rightChannel);
 }
}

#int_timer1
void timer1_isr(){
 pcm_pos = (pcm_pos + 1) % PCM_TABLE_SIZE;

 leftChannel = pcm_table[pcm_pos];
 rightChannel = leftChannel;
}

dsPIC33FJ128GP706 Exercise Book

Change the period of the timer to change the frequency of the output data.
Change the phase of the left and right channel outputs.
Use another timer to generate different frequency on the left and right
channels.

A
B
C

FURTHER STUDYFURTHER STUDY

 This example uses timer overfl ow interrupts to create the intervals at
which the next waveform value is output. If using this method in the
future, do not forget to enable_interrupts().

 Be cautious when using this method to send data to the codec. This
will work when the signal is readily available with no other processing
loads on the dsPIC. See the Chapter 12 for another method of timing
data sent to the codec.

 To save memory, this PCM signal is only 256 samples long. This
produces a nearly pure tone; however some side tones and beat fre-
quencies can be heard. The following Fourier analysis of the samples
shows that some energy is present in the signal at relatively low fre-
quencies (5-10 Hz), which accounts for the tapping or thumping noise
you may hear.

 Varying the speed at which the data is changed varies the frequency of
the output tone

N
O

T
E

S

CCS, Inc.

Sample size is resolution to which the original signal was sampled. An increased sample
size results in greater reproduction fi delity.
Sample frequency is how quickly the samples are taken. Mathematically, two samples
of a waveform are required to reproduce the signal perfectly via a Fourier series.
Unfortunately, PCM does not have the capability to perfectly reproduce a signal, and it
still requires two samples per waveform to reproduce a recognizable tone. The higher
the sample rate, the less aliasing (distortion) of a waveform will occur, resulting in higher
quality. 44.1 kHz is the CD standard sampling rate for this reason. The highest tone a
human (with excellent hearing) can hear is around 22,000 Hz. Since two samples are
required per waveform to create a recognizable tone, the sample frequency must be
twice the highest frequency to be reproduced. 44.1 kHz is just slightly more than double
the highest frequency humans hear.

 Click File>New>Source and name the fi le EX11.C

 Type the following code to show the effects of sample size on a sine wave.
#include <33fj128gp706.h>
#fuses HS, NOWDT, NOCOE, NODEBUG, PR
#use delay(clock=12000000)
#use rs232(baud=9600, UART2)

#include <math.h>
#include <TLV320AIC23B.c>

#defi ne PCM_TABLE_SIZE 256
#defi ne MAXIMUM_VAL 32768

unsigned int8 pcm_pos;
signed int16 pcm_table[PCM_TABLE_SIZE];
const fl oat INCREMENT = ((2*PI)/PCM_TABLE_SIZE);

signed int16 leftChannel = 0x0000;
signed int16 rightChannel = 0x0000;

unsigned int8 sample_resolution = 16; // 1 to 16
signed int32 sample_step;
signed int32 base;
signed int32 multiplier;
int8 down_sample_period = 1;

#defi ne RED_LED PIN_C2
#defi ne YELLOW_LED PIN_G9
#defi ne GREEN_LED PIN_C14

SAMPLE SIZE11

(continued...)

dsPIC33FJ128GP706 Exercise Book

(...continued)

(continued...)

#defi ne BUTTON_1 PIN_B2
#defi ne BUTTON_2 PIN_B3
#defi ne BUTTON_3 PIN_B4
#defi ne BUTTON_4 PIN_B5

void main()
{
 unsigned int8 i;

 setup_adc_ports(NO_ANALOGS);
 setup_adc_ports2(NO_ANALOGS);

 pcm_pos = 0;

 sample_step = 1;
 for(i = 0;i < sample_resolution - 1;i++){
 sample_step *= 2;
 }
 base = MAXIMUM_VAL / sample_step;

 delay_ms(600);

 /* Start up the dci peripheral */
 setup_dci((MULTICHANNEL_MODE | MULTI_DEVICE_BUS | UNDERFLOW_LAST
 | DCI_SLAVE | DCI_CLOCK_INPUT | SAMPLE_RISING_EDGE),
 DCI_2WORD_FRAME | DCI_16BIT_WORD | DCI_2WORD_INTERRUPT,
 RECEIVE_SLOT0 | RECEIVE_SLOT1, TRANSMIT_SLOT0 |
 TRANSMIT_SLOT1, 0);

 /* Initialize the codec */
 codec_initialize();
 codec_setup_analog_path(DAC_SELECT | ADC_MIC_INPUT);

 dci_start();

 /*generate sine wave PCM table */
 for(i = 0; i < 255; i++)
 {
 pcm_table[i] = 127 * sin(INCREMENT * i) + 128;
 }
 //make sure to init i = 255
 pcm_table[i] = 127 * sin(INCREMENT * i) + 128;

CCS, Inc.

 setup_timer1(TMR_INTERNAL | TMR_DIV_BY_8, 10);
 setup_timer2(TMR_INTERNAL | TMR_DIV_BY_64, 0x4000);
 enable_interrupts(INT_TIMER1);
 enable_interrupts(INT_TIMER2);
 enable_interrupts(INTR_GLOBAL);

 while(1)
 {
 codec_write_data16(&leftChannel, 0);
 }
}

#int_timer1
void timer1_isr()
{
 /* Choose the next waveform value */
 pcm_pos = (pcm_pos + 1) % PCM_TABLE_SIZE;

 /* Generate and format the value */
 leftChannel = pcm_table[pcm_pos];

 multiplier = leftChannel / base;
 leftChannel = base * multiplier;

 //rightChannel = leftChannel;
 rightChannel = 0;
}

#int_timer2
void timer2_isr()
{
 int8 i;

 if(!input(BUTTON_4))
 {
 output_toggle(GREEN_LED);

 if(sample_resolution > 1)
 sample_resolution--;

 sample_step = 1;
 for(i = 0;i < sample_resolution - 1;i++)
 sample_step *= 2;

(continued...)

(...continued)

11 SAMPLE SIZE (CONT.)

dsPIC33FJ128GP706 Exercise Book

 base = MAXIMUM_VAL / sample_step;

 return;
 }

 if(!input(BUTTON_3))
 {
 output_toggle(YELLOW_LED);

 if(sample_resolution < 16)
 sample_resolution++;

 sample_step = 1;
 for(i = 0;i < sample_resolution - 1;i++)
 sample_step *= 2;

 base = MAXIMUM_VAL / sample_step;

 return;
 }
}

(...continued)

� Click Compile and then click Tools>ICD to load the program.

� Connect a speaker to J7 and verify the output is a steady tone.

� Press Button 3 (B4) to increase the sample size and Button 4 (B5) to decrease the
sample size.

Apply the down-sampling and frequency reductions to only one audio
channel and compare the two channels.
Signifi cantly increase the amplitude of the output signal to understand the
effects of saturation; the effects will be more obvious if you do so at a large
sample size. Try multiplying the leftChannel value.
Signifi cantly increase the amplitude of the output signal to understand the
effects of saturation; the effects will be more obvious if you do so at a large
sample size. Try multiplying the leftChannel value.
Advanced: Calculate the Root-Mean-Square volume of the signal and use
it normalize the signal (keep the volume constant) as it is down-sampled.
Down sample input from the microphone instead of a sine wave input.

A

B

C

D

FURTHER STUDY

N
O

T
E

S
 Sampling frequency and sample size are two major factors in audio

quality. However, saturation may also signifi cantly affect the quality of
the signal. Most standard audio equipment works over a 1 Volt RMS
range. If the amplitude of the signal is pushed too high, generally by
hardware amplifi ers, parts of the signal may be pushed outside of the
1 V RMS range; creating a plateau on the waveform as if it was simply
chopped off. This will produce a rattling sound. It is the rattling sound
heard when a stereo is turned up to maximum volume.

 Down-sampling the signal is achieved by clipping off the least sig-
nifi cant bits of the PCM sign and scaling it appropriately. 16 bits per
channel is the lowest sample size the codec can produce, however the
codec may sample as high as 32 bits per channel.

 Timer interrupts are effective for obtaining user input at preset inter-
vals. If you choose to use interrupts for any purpose, don’t forget to
enable _ interrupts(INTR _ GLOBAL). Failing to do so will allow
no interrupts to run, regardless of their source.

CCS, Inc.

11 SAMPLE SIZE (CONT.)

dsPIC33FJ128GP706 Exercise Book

#include <33fj128gp706.h>
#fuses HS, NOWDT, NOCOE, NODEBUG, PR_PLL
#use delay(clock=80000000)
#use rs232(baud=9600, UART2)

#defi ne MMCSD_PIN_SCL PIN_G6 //o
#defi ne MMCSD_PIN_SDI PIN_G7 //i
#defi ne MMCSD_PIN_SDO PIN_G8 //o
#defi ne MMCSD_PIN_SELECT PIN_D8

#include <mmcsd.c>
#include <TLV320AIC23B.c>

#defi ne RED_LED PIN_C2
#defi ne YELLOW_LED PIN_G9
#defi ne GREEN_LED PIN_C14

signed int16 TxBufferA[256];
signed int16 TxBufferB[256];
signed int16 RxBufferA[256];
signed int16 RxBufferB[256];

12 DIRECT MEMORY ACCESS AND
SD/MMC

(continued...)

 A nonvolatile storage medium can be used to save and playback data from the codec.
However, the SD/MMC card can not be accessed continuously due to buffer write delays
which would create gaps in the waveform.

Direct Memory Access (DMA) solves this issue by allowing the processor to
asynchronously write to the codec. This is done by writing the data to send to a buffer in
RAM and then confi guring the DMA module to use that buffer to write data to the codec
without the intervention of the CPU. When it is fi nished, it will interrupt the CPU for more
data. DMA can be used to transfer data while reading more data from the SD card,
process incoming data and operate other peripherals or devices.

DMA is not specifi c to only the DCI (codec) peripheral and can be used for many
peripherals on the microcontroller including SPI and the Analog to Digital converter for
both reading and writing from and to the peripheral.

The DMA peripheral can be confi gured to both read and write from the codec in a double
buffered fashion. While one buffer is sent to the codec, the CPU will fi ll the other

 Click File>New>Source File and name the fi le EX12.C

 Type the following program:

(...continued)

(continued...)(continued...)

/* DMA RAM begins at location 0x4000 and extends for 2Kbytes after,
 this allows us to reserve this area for our exclusive use;
 This location changes with the type of chip used, check your
 datasheet for DMA RAM locations. */
#defi ne DMA_BASE 0x4000
#locate TxBufferA=0x4000
#locate TxBufferB=0x4200
#locate RxBufferA=0x4400
#locate RxBufferB=0x4600

#defi ne DMA_OUT_DCI (0x3C0000|DMA_OUT|getenv(“sfr:TXBUF0”))
#defi ne DMA_IN_DCI (0x3C0000|DMA_IN |getenv(“sfr:RXBUF0”))
#defi ne RECORD_LENGTH (1024*128) // divide by 1024 for kB

unsigned int32 mmcsd_address=0;
char mode=0;
int16* bufferPtr;
int1 bufferIsLoaded;

#word CLKDIV = getenv(“sfr:CLKDIV”)
#bit PLLPOST0 = CLKDIV.6
#bit PLLPOST1 = CLKDIV.7
#word PLLFBD = getenv(“sfr:PLLFBD”)
#word OSCCON = getenv(“sfr:OSCCON”)
#bit LOCK = OSCCON.5

void setup_pll()
{
 //M = 40, N1 = 3, N2 = 2

 //N1
 CLKDIV = 1; //PLLPRE

 //N2
 PLLPOST0 = 0;
 PLLPOST1 = 0;

 //M
 PLLFBD = 38;
 while(!lock);
}

CCS, Inc.

(...continued)

12 DIRECT MEMORY ACCESS AND
SD/MMC (CONT.)

dsPIC33FJ128GP706 Exercise Book

void main()
{
 setup_adc_ports(NO_ANALOGS);
 setup_adc_ports2(NO_ANALOGS);

 setup_pll();
 delay_ms(10);

 if(mmcsd_init() != MMCSD_GOODEC)
 {
 output_high(RED_LED);
 printf(“Fails init op”);
 }

 delay_ms(600);

 /* Setup the dci peripheral */
 setup_dci((MULTICHANNEL_MODE | MULTI_DEVICE_BUS | UNDERFLOW_LAST |
 DCI_SLAVE | DCI_CLOCK_INPUT | SAMPLE_RISING_EDGE),
 DCI_1WORD_FRAME | DCI_16BIT_WORD | DCI_2WORD_INTERRUPT,
 RECEIVE_SLOT0 | RECEIVE_SLOT1,
 TRANSMIT_SLOT0 | TRANSMIT_SLOT1, 0);

 dci_start();

 /* Initialize the codec */
 codec_initialize();
 codec_setup_analog_path(DAC_SELECT | ADC_MIC_INPUT);

 /* Setup DMA */
 setup_dma(1, DMA_OUT_DCI, DMA_WORD);
 setup_dma(2, DMA_IN_DCI, DMA_WORD);

 clear_interrupt(INT_DMA1);
 clear_interrupt(INT_DMA2);
 enable_interrupts(INTR_GLOBAL);

 delay_ms(200);
 printf(“\r\nBegin\r\n”);

(continued...)

(...continued)

(continued...)

(...continued)

(continued...)

(...continued)

while(1){
 printf(“\r\nRecord or playback? (r, p)”);
 mode = getc();
 delay_ms(10);

 if(mode == ‘r’)
 {
 printf(“\r\nRecording\r\n”);
 mmcsd_address=0;
 bufferPtr = RxBufferA;
 bufferIsLoaded = TRUE;
 delay_ms(10);

 enable_interrupts(INT_DMA2);
 dma_start(2, DMA_ONE_SHOT, RxBufferA,0x0100);

 while(mmcsd_address<RECORD_LENGTH){

 while(bufferIsLoaded);

 if(bufferPtr == RxBufferA){
 dma_start(2, DMA_ONE_SHOT, RxBufferA, 0x0100);
 bufferPtr = RxBufferB;
 }
 else{
 dma_start(2, DMA_ONE_SHOT, RxBufferB, 0x0100);
 bufferPtr = RxBufferA;
 }

 disable_interrupts(INT_DMA2);
 mmcsd_write_block(mmcsd_address,512,(int8*)bufferPtr)
 mmcsd_address+=512;
 bufferIsLoaded = TRUE;
 enable_interrupts(INT_DMA2);
 }
 disable_interrupts(INT_DMA1);
 disable_interrupts(INT_DMA2);

 printf(“\r\nDone”);
 }

CCS, Inc.

(...continued)

12 DIRECT MEMORY ACCESS AND
SD/MMC (CONT.)

dsPIC33FJ128GP706 Exercise Book

 else if(mode == ‘p’)
 {
 printf(“\r\nPlayback”);
 delay_ms(100);

 mmcsd_address=0x0000;
 bufferIsLoaded = FALSE;
 bufferPtr = TxBufferA;
 enable_interrupts(INT_DMA1);

 mmcsd_read_block(mmcsd_address,512,(int8*)bufferPtr);
 mmcsd_address+=512;

 while(mmcsd_address<RECORD_LENGTH){

 if(bufferPtr == TxBufferA){
 dma_start(1, DMA_ONE_SHOT, TxBufferA, 0x0100);

 bufferPtr = TxBufferB;
 }
 else{
 dma_start(1, DMA_ONE_SHOT, TxBufferB, 0x0100);
 bufferPtr = TxBufferA;
 }

 mmcsd_read_block(mmcsd_address,512,(int8*)bufferPtr);
 mmcsd_address+=512;
 bufferIsLoaded = TRUE;

 while(bufferIsLoaded);
 }
 disable_interrupts(INT_DMA1);
 printf(“\r\ndone\r\n”);
 }
 }
}
}

(...continued)

(continued...)

CCS, Inc.

#INT_DMA1
void dma1_isr()
{
 bufferIsLoaded = FALSE;
 clear_interrupt(INT_DMA1);
}

#INT_DMA2
void dma2_isr()
{
 bufferIsLoaded = FALSE;
 clear_interrupt(INT_DMA2);
}

(...continued)

12 DIRECT MEMORY ACCESS AND
SD/MMC (CONT.)

N
O

T
E

S

 It is a good idea to check that the mmcsd_xxxx functions return
MMCSD_GOODEC. If they do not, the media may not be of the correct
type, or it may have been removed.

 DMA is comprised of 8 channels. Each channel is one way (read or
write) and provides an interrupt when it is fi nished transferring data.

 DMA is used as a double buffer here, but it is possible to use a single
buffer to conserve DMA RAM

 There are 2 Kbytes of DMA RAM available. This example, uses all of
it. 512 bytes for each buffer on both receive and transmit channels.
512 bytes was chosen because it matches the size of an SD Card
block. However, a smaller, or arbitrary number could be chosen.

 Use the included serial cable to connect the PC and prototyping board and open the
program Tools>Serial Port Monitor. Set the correct COMM port if necessary.

 Click Compile and then Tools>ICD to load the program.

 Check the red LED is not lit to verify that the MMC/SD card was recognized. Try pressing
the reset button once if the initialization fails.

 At the prompt, press ‘r’ or ‘p’ on the keyboard to record and play microphone samples.

Setting up the DCI module on your own hardware involves:

 • Choosing a protocol (Multi-channel, I2S, or AC’97 (16 or 20 bit)

 • Confi guring the size and number of your sample frames

 • Calculating your sample rate if master mode is selected

dsPIC33FJ128GP706 Exercise Book

Setting up the DCI module on your own hardware involves:Setting up the DCI module on your own hardware involves:

13 MIGRATING TO YOUR OWN
HARDWARE

DCI Protocols
The DCI peripheral supports multiple audio PCM protocols. Each of them may be utilized
by many different devices and each may fi nd their individual use. The following is a
summary of each that may be used with this development kit.

Multi-channel
Multi-channel DCI is an adaptable, general purpose protocol. It consists of data frames
which are delineated by a pulse of the Frame sync signal (COFS). Following the frame
sync signal are anywhere between 1 and 16 data words. Each data word is comprised of
4 to 16 bits (user confi gurable). The direction (input or output) of each word is confi gurable
by the user.

 This bus is generally used when multiple devices are being used on the same bus. For
example, a codec controller (a dsPIC) may be on a bus with a modem codec in a fax
machine. On the same bus, we have a voice codec to receive input from the telephone.
We can use a multi-channel protocol with an input word from each device followed by an
output data word to each codec for a total of 4 data words. Keep in mind when designing
such a bus that most codec chips can allow you to select a range of possible data words
and when in the frame they are transmitted. The range is generally limited though, so you
should be sure that you can use the multi-channel bus without any collisions (which would
result in contention on this protocol).

I2S, Inter-Integrated Sound
I2S is a protocol designed for stereo sound transmission between two devices. This is a
relatively common protocol and provides for full duplex sound transmission. Unlike I2C
however, there is no addressing system which usually limits the number of devices to
master and slave. Also four wires are required, frame sync, input, output and a clock.
Depending on your codec hardware, you may be able to add data words to each half of
the transmission, similar to a multi-channel protocol. Refer to your codec datasheet for
possible confi gurations.

 I2S uses the COFS signal on the dsPIC as a frame sync that has a 50% duty cycle over
the course of a frame. The particulars about which half is what are confi gurable; normally
the left channel data is transferred one clock cycle after the rising edge of the COFS
signal, followed by the right channel data after the falling edge of the signal.

Other sound transmission types
AC’97 both 16 and 20 bit protocols are supported by the DCI module on the dsPIC. The
codec used on this board (the Texas Instruments TLV320AIC23B) does not utilize this
protocol, though you may use it on your own hardware. This transmission consists of a
set protocol with fi xed data size. It is recommended that you manually confi gure the DCI
module for use with this transmission protocol, especially the 20 bit confi guration.

CCS, Inc.

Troubleshooting
AC’97 both 16 and 20 bit protocols are supported by the DCI module on the dsPIC. The
codec used on this board (the Texas Instruments TLV320AIC23B) does not utilize this
protocol, though you may use it on your own hardware. This transmission consists of a
set protocol with fi xed data size. It is recommended that you manually confi gure the DCI
module for use with this transmission protocol, especially the 20 bit confi guration.

 The MCLR pin must be in a high state for the chip to run. Note the Prototyping board
schematic uses a pushbutton to ground this pin and to reset the chip.

 Most problems involve the clock. Make sure the confi guration fuses are set to the proper
oscillator setting. In the above case, for a 12MHz crystal HS (High Speed) and PR
(Primary Oscillator) is the proper setting. In the above circuit, the size of the resistor may
need adjustment depending upon the crystal.

 If the program does not seem to be running, verify 3.3 Volts on the MCLR pin and the
two power pins.

 Isolate hardware problems from fi rmware problems by running a program with the
following at the start of main () and check B0 with a logic probe or scope:

while(TRUE) {
 output_low (PIN_B0);
 delay_ms (1000);
 output_high (PIN_B0);
 delay_ms (1000);
 }

13 MIGRATING TO YOUR OWN
HARDWARE (CONT.)

This booklet is not intended to be a tutorial for the dsPIC33FJ128GP706 or the C
programming language. It does attempt to cover the basic use and operation of the
development tools. There are some helpful tips and techniques covered, however, this is far
from complete instruction on C programming. For the reader not using this as a part of a class
and without prior C experience the following references should help.

References

On The Web
Comprehensive list of PICmicro®
Development tools and information

www.mcuspace.com

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

Texas Instruments Data Sheet
TLV320AIC23BPW

http://focus.ti.com/docs/prod/folders/
print/tlv320aic23b.html

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small
debug program in the chip. This is a basic debug tool that takes up some of the chip’s
resources (I/O pins and memory). An emulator replaces the chip with a special connector
that connects to a unit that emulates the chip. The debugging works in a simulator manner
except that the chip has all of its normal resources, the debugger runs faster and there are
more debug features. For example an emulator typically will allow any number of breakpoints.
Some of the emulators can break on an external event like some signal on the target board
changing. Some emulators can break on an external event like some that were executed
before a breakpoint was reached. Emulators cost between $500 and $3000 depending on the
chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand
alone device programmer may be used to program all the chips. These programmers will
use the .HEX file output from the compiler to do the programming. Many standard EEPROM
programmers do know how to program the Microchip parts. There are a large number of
Microchip only device programmers in the $100-$200 price range. Note that some chips
can be programmed once (OTP) and some parts need to be erased under a UV light before
they can be re-programmed (Windowed). CCS offers the Mach X which is a stand-alone
programmer and can be used as an in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources.
Some have an ICD interface and others simply have a socket for a chip that is externally
programmed. Some boards have some advanced functionality on the board to help design
complex software. For example, CCS has a Prototyping board with a full 56K modem on
board and a TCP/IP stack chip ready to run internet applications such as an e-mail sending
program or a mini web server. Another Prototyping board from CCS has a USB interface chip,
making it easy to start developing USB application programs.

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip.
A simulator offers all the normal debug capability such as single stepping and looking at
variables, however there is no interaction with real hardware. This works well if you want to
test a math function but not so good if you want to test an interface to another chip. With the
availability of low cost tools, such as the ICD in this kit, there is less interest in simulators.
Microchip offers a free simulator that can be downloaded from their web site. Some other
vendors offer simulators as a part of their development packages.

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
 · Specify operational settings at the execution level
 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface
 · Simply point, click and program
 · Additions to HEX file organization include associating comments or a graphic image
 to a file to better ensure proper file selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics
 · Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specific driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a file list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™
 · All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help file for additional assistance.

 B
0

G
2

G
6

B
1

0
B

1
2

B
1

4
F0

D
1

0
G

G

G
1

G
3

G
8

B
1

1
B

1
3

B
15

D
11

F1

3
.3

3
.3

3
.3

3
.3

D
0

C
1

4
G

0

3
.3

3
.3

3
.3

3
.3

C
1

3
G

9
B3

G

P
u

sh
b

u
tt

o
n

B

2 P
u

sh
b

u
tt

o
n

B

2

P
u

sh
b

u
tt

o
n

B

4 P
u

sh
b

u
tt

o
n

B

5

C
2

G
9

C
1

4

P
o

t
A

8

P
o

t
A

9

P
o

w
er

9
V

 D
C

J8
M

M
C

/S
D

LINE IN

LINE OUT

SPKR

MIC

J5
J6

J7

P
u

sh
b

u
tt

o
n

R

ES
ET

R
S

 -
2

3
2

F4

, F
5

IC
D

C
o

n
n

ec
to

r

d
sP

IC
33

FJ
12

8G
P

70
6

