
Development Kit
For the PIC® MCU

Exercise Book

Wireless - ZMD Edition
August 2009

PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.
ZigBee™ is a trademark of the ZigBee™ Alliance, Inc.

Copyright © 2009 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.

CCS, Inc.

1 UNPACKING AND INSTALLATION

Inventory
 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must

have a spare 9-Pin Serial or USB port, a CD-ROM drive and 75 MB of disk space.

 The diagram on the following page shows each component in the Wireless - ZMD Edition kit.
Ensure every item is present.

Software
 Insert the CD into the computer and wait for the installation program to start. If your computer

is not set up to auto-run CDs, then select Start>Run and enter D:\SETUP1.EXE where D: is
the drive letter for your CD drive.

 Click on Install and use the default settings for all subsequent prompts by clicking NEXT,
OK, CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will have
created an empty directory c:\program fi les\picc\projects that may be used for this purpose.

 Select the compiler icon on the desktop. In the PCW IDE, click Help>About and verify a
 version number is shown for the IDE and PCH to ensure the software was installed properly.

Exit the software.
Hardware

 Connect the PC to the ICD(5) using the USB cable.(1) Connect the prototyping board (8) to
the ICD using the modular cable. Plug in the DC adaptor (7) to the power socket and plug
it into the prototyping board (8). The fi rst time the ICD-U is connected to the PC, Windows
will detect new hardware. Install the USB driver from the CD or website using the new
hardware wizard. The driver needs to be installed properly before the device can be used.

 The LED should be red(2) on the ICD-U to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the desktop.
Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LED should be
illuminated green. If any errors are detected, go to Diagnostic tab. If all tests pass, the
hardware is installed properly.

 Disconnect the hardware until you are ready for Chapter 3. Always disconnect the power
to the Prototyping board before connecting/disconnecting the ICD or changing the
jumper wires to the Prototyping board.

(1) ICD-S40 can also be used in place of ICD-U. Connect it to an available serial port on the PC using the 9
pin serial cable. There is no driver required for S40.
(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

Wireless - ZMD Edition Exercise Book

1 Carrying case
2 Exercise booklet
3 Two Serial PC to Prototype board cable

 4 Modular cable (ICD to Prototyping board)
 5 ICD unit for programming and debugging
 6 Serial (or USB) PC to ICD cable
 7 Two AC Adaptors (9VDC)
 8 Two Prototyping boards with a PIC18LF452 processor chip,
 with ZMD wireless radio modules (installed on prototyping boards)
 *Antenna for boards is separate for shiping, install stripped end into 1-pin header
 9 CD-ROM of C compiler (optional)

1

Wire
less - Z

MD Editio
n

ICD-U64

1

Wire
less - Z

MD Editio
n

CCS, Inc.

2 USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

Editor
 Open the PCWH IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: c:\program fi les\picc\examples\ex_stwt.c

 Scroll down to the bottom of this fi le. Notice the editor shows comments, preprocessor
directives and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a Help fi le
description for set_timer0 appears. The cursor may be placed on any keyword or built-in
function and F1 will fi nd help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various standard
cut, paste and copy functions.

 Review the editor option settings by clicking on Options>Editor Properties. The
IDE allows selection of the tab size, editor colors, fonts, and many more. Click on
Options>Toolbar to select which icons appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different

compilers for each family of Microchip parts. All the exercises in this booklet are for the
PIC18LF452 chip, a 16-bit opcode part. Make sure Microchip PCH 16 bit is selected in
the white box under the Compiler tab.

 The main program compiled is always shown in the bottom of the IDE. If this is not the
fi le you want to compile, then click on the tab of the fi le you want to compile. Right click
into editor and select Make fi le project.

 Click Options>Project Options>Include Files… and review the list of directories
the compiler uses to search for included fi les. The install program should have put two
directories in this list: devices and drivers.

 Normally the fi le formats need not be changed and global defi nes are not used in these
exercises. To review these settings, click Options>Project Options>Output Files and
Options>Project Options>Global Defi nes.

 Click the compile icon to compile. Notice the compilation box shows the fi les created
and the amount of ROM and RAM used by this program. Press any key to remove the
compilation box.

Wireless - ZMD Edition Exercise Book

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the microcontroller

is used. Identifiers that start with @ are compiler generated variables. Notice some
locations are used by more than one item. This is because those variables are not active
at the same time.

 Click Compile>C/ASM List. This file shows the original C code and the assembly code
generated for the C. Scroll down to the line:
 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal. The
second instruction moves W into memory. Switch to the Symbol Map to find the memory
location where int_count is located.

 Click View>Data Sheet, then View. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files
and Projects are created, opened,
or closed using this menu.

Place cursor here for slide out boxes.
slide out boxes. All of the current
project’s source and output files can
be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using

this menu.

CCS, Inc.

3

#include <18f452.h>
#device ICD=TRUE
#fuses HS,NOLVP,NOWDT
#use delay (clock=10000000)

#defi ne GREEN_LED PIN_A5

void main () {
 while (TRUE) {
 output_low (GREEN_LED);
 delay_ms (1000);
 output_high (GREEN_LED);
 delay_ms (1000);
 }
}

N
O

T
E

S

 The fi rst four lines of this program defi ne the basic hardware environ-
ment. The chip being used is the PIC18LF452, running at 10MHz with
the ICD debugger.

 The #defi ne is used to enhance readability by referring to GREEN_LED
in the program instead of PIN_A5.

 The “while (TRUE)” is a simple way to create a loop that never stops.

 Note that the “output_low” turns the LED on because the other end of
the LED is +5V. This is done because the chip can tolerate more current
when a pin is low than when it is high.

 The “delay_ms(1000)” is a one second delay (1000 milliseconds).

 Open the PCWH IDE. If any fi les are open, click File>Close All

 Click File>New>Source File and enter the fi lename EX3.C

 Type in the following program and Compile.

COMPILING AND
RUNNING A PROGRAM

Wireless - ZMD Edition Exercise Book

 Connect the ICD to the Prototyping board using the modular cable, and connect the ICD
to the PC. Power up the Prototyping board.

 Click Debug>Enable Debugger and wait for the program to load.

 If you are using the ICD-U40 and the debugger cannot communicate to the ICD unit go
to the debug configure tab and make sure ICD-USB from the list box is selected.

 Click the green go icon:

 Expect the debugger window status block to turn yellow indicating the program is
running.

 The green LED on the Prototyping board should be flashing. One second on and one
second off.

 The program can be stopped by clicking on the stop icon:

 Modify the program to light the A5 LED for 5 seconds, then the
B5 for 1 second and the B4 for 5 seconds.

 Add to the program a #define macro called “delay_seconds” so the
delay_ms(1000) can be replaced with : delay_seconds(1); and
delay_ms(5000) can be: delay_seconds(5);.

Note: Name these new programs EX3A.c and EX3B.c and follow the same
 naming convention throughout this booklet.

A

B

FURTHER STUDY

ICD-U64

CCS, Inc.

4 ZIGBEE™ OVERVIEW

 ZigBee™ is a specifi ed protocol for creating a wireless personal area network (WPAN). The
two primary goals of the ZigBee™ organization was to create a WPAN that can run using the
least amount of power and the least amount of resources. Low power and low complexity
make ZigBee™ a very attractive wireless networking solution for embedded systems.

 The physical and MAC layer used by ZigBee™ is IEEE 802.15.4, and will be discussed in
the next chapter. 802.15.4 operates in two frequency bands, 900MHz or 2.4GHz.

 There are three different types of ZigBee™ devices: full function devices (FFD)
coordinators and reduced function devices (RFD). A FFD can route information between
two nodes, or create entirely new networks. A coordinator is an FFD that has taken the
task of creating and administrating the network. An RFD is the simplest form of device,
and can only talk to an FFD – it cannot create a network or relay between two nodes.

 ZigBee™ coordinators can create three different kind of networks; Star, Cluster Tree or
Mesh networks (fi gure 4.1):

Wireless - ZMD Edition Exercise Book

 The ability for a node to be a coordinator, router or end node is dependent on each unit’s
capabilities. A RFD can only be an end node. Mesh and Cluster Tree networks provide
for more stability and longer range than Star networks; sacrificing network/node complexity
and larger power requirements.

Star

Cluster Tree

Mesh

PAN coordinator

Full Function Device

Reduced Functions Device

Figure 4.1

CCS, Inc.

8
 The physical/MAC layer of ZigBee™ is 802.15.4, which is a wireless standard aimed for

low power consumption. Low power is achieved in two ways: low data rates and using a
beacon to synchronize when nodes can go to sleep.

 The current 802.15.4 specifi cation uses three frequency bands:

 802.15.4 also uses ‘Carrier Sense, Multiple Access’ (CSMA) to prevent two nodes from
attempting to talk at the same time. Beacons and acknowledge messages do not use
CSMA.

 Here is an overview of the data sent by the 802.15.4 physical layer:

 The preamble and start-of-fi eld marker are used to distinguish a start of 802.15.4.
Length is the size of the MPDU.

 Here is an overview of the data sent in the MAC Sublayer (MPDU):

 Addressing and frame control is specifi ed by the 2 Frame Control bytes:

Frequency
Band (MHz) # Channels Region Modulation

Max Data
Throughput

(Kbit/s)
868.0 – 868.6 1 Europe BPSK 20
902 – 928 10 North America, Japan BPSK 40
2400 – 2483.5 16 Worldwide O-QPSK 250

Figure 5.1 – 802.15.4 Frequency Bands

Bytes 4 1 1 x
Preamble SOF Length MAC Sublayer (MPDU)

Figure 5.2 – 802.15.4 PHY Layer

Bytes 2 1 4 to 20 n 2
Frame Control Seq Num Address Field Data Payload (MSDU) FCS

 Figure 5.3 – 802.15.4 MAC Layer

Bit Description
0:2 Frame Type (0b000=Beacon, 0b001=Data, 0b010 = ACK, 0b011=Command)
3 Security Enabled
4 Frame Pending
5 Acknowledge Requested
6 IntraPan
7:9 RESERVED
10:11 Destination Addressing Mode (0b00=NONE, 0b10=16bit, 0b11=64bit)
12:13 RESERVED
14:15 Source Addressing Mode (0b00=NONE, 0b10=16bit, 0b11=64bit)

Figure 5.4 – 802.15.4 MAC Frame Control

85 802.15.4 OVERVIEW

Wireless - ZMD Edition Exercise Book

 The size and content of the address field of the MAC datagram is dependent on the
Frame Type and address mode specified in the Frame Control word. Here is a mapping
of all possible addressing modes, courtesy of the ZMD44102 datasheet:

 Upon inspection of Figure 5.5, note that an ACK frame contains no addressing, a beacon
frame may contain 4 to 10 bytes of addressing, and a data/cmd frame may contain 4-20
bytes of addressing.

 A beacon frame is originated by the PAN coordinator and is used to synchronize all
nodes in the network. A command frame is used by frames to help create the networks
shown in Figure 4.1, and will not be covered in this tutorial. Data and ACK frames will be
covered extensively in the next few chapters.

Figure 5.5 - 802.15.4 MAC Addressing Formats

CCS, Inc.

8

 The Wireless (ZMD) Development kit has a PIC18LF452 running at 3.3V.

 The entire board can be powered with a 9VDC power supply or with a 9V battery.

 A potentiometer is connected to RA0 (AN0), a pushbutton is connected to RA4, three
LEDs are connected to RB4, RB5 and RA5 and an I/O header is connected for access
to the other pins of the PIC18LF452.

 For RS232 serial I/O, an RS232 driver is connected to RC6 and RC7.

 Three 7-segment LEDs are also available, which can be controlled using RB2, RB4 and
RB5 (example code will be given later for the 7-segment LEDs).

 The ZigBee™-compliant (802.15.4 PHY/MAC) radio and the ZMD44102 are being used for
this tutorial book and development kit. The ZMD44102 is a one-chip-solution that provides
802.15.4 PHY/MAC support in the 800-900MHz frequency bands (see Figure 5.1). When
sleeping, this radio only takes a few micro-amps, ideal for low-power or battery powered
embedded systems. A good antenna can achieve distances of over 350 feet.

 This kit is intended to develop a 802.15.4 Compatable Communication Systems.
Creating a ZigBee™ network will not be covered with this tutorial.

86 OVERVIEW OF THE CCS WIRELESS
(ZMD) DEVELOPMENT KIT

Wireless - ZMD Edition Exercise Book

THE ZMD44102 RADIO7
 The ZMD44102 radio is a ZigBee™-compliant, 802.15.4 PHY/MAC low-power transceiver.

Even if ZigBee™ is not going to be used, it is a great low-power radio transceiver to use in
any embedded project. The ZMD44102 can be interfaced using SPI or a parallel interface.

 CCS provides a library for controlling the radio, as well as several higher level MAC
functions. Below is an example that generates a carrier wave on channel 6.

 Type in the following program, Compile and Run:

#include <18F452.h>
#fuses HS,NOWDT,NOLVP
#use delay(clock=10000000)

#include <ZMD44102.h>

void zmd_generate_cw(int8 channel, int8 modulated)
{
 if (modulated)
 ZPhy_SetTX(ZPHY_TX_MODE_MODULATED_CARRIER, ZPHY_TX_POWER_MAX);
 else
 ZPhy_SetTX(ZPHY_TX_MODE_CARRIER, ZPHY_TX_POWER_MAX);

 ZMac_SetTX(ZMAC_TX_MODE_DIRECT, ZMAC_TX_SLOTTED_DISABLE);
 ZPhy_SetChannel(channel);
 zmd_set_maccontrol(ZMD_mc_TxOn);
}

void main(void) {
 zmd_init();

 zmd_generate_cw(6, FALSE);

 while(TRUE);
}

CCS, Inc.

THE ZMD44102 RADIO (CONT.)7

 The ZMD44102 supports the 11 channels in the 800/900MHz frequency band (see Figure
5.1). The actual frequency for each channel can be found in the following chart:

Channel Frequency (MHz)

 0 868.3

 1 906

 2 908

 3 910

 4 912

 5 914

 6 916

 7 918

 8 920

 9 922

 10 924

Figure 7.2 – ZMD44102 Frequencies Supported

-70
-60
-50
-40
-30
-20
-10

0
10

-80

-60

-40

-20

0

20

40

1 33 65 97 129 161 193 225 257 289 321 353 385

Figure 7.2 - Unmodulated CarrierFigure 7.1 - Modulated Carrier

 While this example is running, connect a spectrum analyzer to the antenna of the
prototyping board. A large spike at 916MHz means the ZMD44102 is properly generating
a carrier wave on channel 6:

Wireless - ZMD Edition Exercise Book

N
O

T
E

S
 If zmd_generate_cw(6, TRUE) is called, a modulated carrier wave is sent.

Inspect the DSSS and BPSK modulation pattern used. If you inspect
916MHzwith a spectrum analyzer you should see Figure 7.1

 zmd_init() will initiate the ZMD interface and go into an idle state
 ZPhy_SetTX(mode, power) confi gures the physical layer of the ZMD44102

radio. Normally this function will not need to be called, as the default
values will suffi ce for most applications. For possible values of power, see
ZPHY_TX_POWER in ZMD44102.H.

 ZMac_SetTx(mode, slotted) confi gures the 802.15.4 MAC operation of the
ZMD44102 radio. This function does not normally need to be called, the
default values will suffi ce for most applications. The default mode is usually
CSMA, but for generating a carrier wave it is best to turn off the CSMA mech-
anism. Slotted mode should only be enabled for networks, since this tutorial
will not do any 802.14.4 networks, always leave slotted mode disabled.

 ZPhy_SetChannel(channel) confi gures the RF channel the ZMD44102
radio will operate on. You can get your current channel by using Zphy_
GetChannel().

 zmd_set_maccontrol() puts the ZMD44102 into the specifi ed operational
mode. Normally the application will never call this function, instead the
ZMD44102.H library will set the unit into the appropriate modes needed. See
the offi cial ZMD44102 documentation for a list of valid operational modes.

CCS, Inc.

8 SENDING A SIMPLE MESSAGE

 Before continuing, copy the fi rst 5 lines of this program and save them into a new fi le
called zmd.h. Save zmd.h in the same directory as the examples of this tutorial.

 In this chapter the MAC functions in ZMD44102.C will be used to send a 16-bit message.
To keep the example simple, 16-bit addressing will be used. Since this is not a network
device, multi-network PAN will not be necessary.

 Looking at Figure 5.5, this addressing mode can be achieved with IntraPan=1,
Destination Addressing Mode=0b10 and Source Addressing Mode=0b10. The security
enabled bit of the frame control should be left clear as it will not be used. A frame will
not be pending, so the frame pending bit of the frame control should be left clear. The
acknowledge requested bit will be set to signify to the receiving node that we want an
acknowledgement.

Bytes 2 1 2 2 2 2 1

MAC
Layer

Frame
Control
(0x8863)

Sequence
Number

PanId

(0x8000)

DstAddr16

(0x0002)

SrcAddr16

(0x0001)

Data
(MSDU)
(0x1234)

FCS

Bytes 4 1 1

PHY
Layer

Preamble SOF Frame
Length
(14)

DATA

(See MAC Layer above)

 Figure 8.1 – Example MAC Packet

Wireless - ZMD Edition Exercise Book

 With these specifications, concatenate Figures 5.2, 5.3, 5.4 and 5.5 into a complete
frame (assume the PanId is 0x8000, DstAddr16 is 0x0002, SrcAddr is 0x0001 and the
data is 0x1234):

 The ZMD44102 has a TX FIFO which can be used in two ways. The standard method
uses the TX FIFO to hold the MSDU, and the ZMD44102 will generate the rest of
the MAC header depending on the contents of several registers (such as mhrFc1Tx,
mhrDstAddr16, etc). The second method requires the user to generate a MAC header
and stuffs it into the TX FIFO. The transmit FIFO for the 44102 is 128 bytes.

 Once the transmit FIFO is full (and if using the first method, all the header registers are
set), transmission is initiated by setting the operational control register (macControl) to
TxOn (0x03). If CSMA is enabled, the ZMD44102 will first listen to the traffic channel
for a short while to determine if the channel is busy. If the channel is busy it will set the
macTxStatus register to denote a CSMA error and put the radio back into Idle mode. If
CSMA was disabled or if there was no traffic on the channel it will transmit the frame and
set the macTxStatus register to success. If an ACK was requested it will then put the
radio into RX state and wait for an ACK frame for a short time. If an ACK was received in
the time period, macRxStatus will be set to Ack, else it will be set to AckTimeOut.

CCS, Inc.

8 SENDING A SIMPLE MESSAGE
(CONT.)

#defi ne BUTTON_PRESSED() (!input(PIN_A4))
#defi ne PIN_LED1 PIN_B4
#defi ne PIN_LED2 PIN_B5
#defi ne PIN_LED3 PIN_A5
#defi ne LED_ON output_low
#defi ne LED_OFF output_high

#defi ne EXP_OUT_ENABLE PIN_B2
#defi ne EXP_OUT_CLOCK PIN_B4
#defi ne EXP_OUT_DO PIN_B5
#defi ne NUMBER_OF_74595 3
#include <74595.c>

const char digit_format[10]={
0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8, 0x80, 0x90
};

void leds_off(void) {
 LED_OFF(PIN_LED1);
 LED_OFF(PIN_LED2);
 LED_OFF(PIN_LED3);
}

void lcd_clear(void) {
 int8 digits[3]={0xFF,0xFF,0xFF};
 write_expanded_outputs(&digits[0]);
 output_low(EXP_OUT_ENABLE);
 leds_off();
}

(continued...)

 Add to zmd.h

Wireless - ZMD Edition Exercise Book

(continued...)

void lcd_putd(int16 num) {
 int8 digits[3];
 if (num>999) {num=999;}

 digits[0]=num / 100;
 digits[1]=(num % 100) / 10;
 digits[2]=num % 10;

 digits[0]=digit_format[digits[0]];
 digits[1]=digit_format[digits[1]];
 digits[2]=digit_format[digits[2]];

 write_expanded_outputs(&digits[0]);
 output_low(EXP_OUT_ENABLE);

 LED_OFF(PIN_LED1);
 LED_OFF(PIN_LED2);
}

void myZMacInit(void)
{
 ZMac_Init();

 ZMac_SetMyShortAddress(MyShortAddress);
 ZMac_SetMyPanId(MyPanId);
 ZMac_UseMyShortAddress();
 ZPhy_SetChannel(MyRFChannel);
}

CCS, Inc.

8 SENDING A SIMPLE MESSAGE (CONT.)

#defi ne USE_READ_BUFFER
#include <USBMaster.h>
#defi ne _bootloader
#include <VNC1L_bootloader.h>

#ORG default

void main(){
 char c;
 char fi lename[STRING_SIZE];

 USBMasterInit();

 printf(“Application Ver 1.0”);

 while(TRUE){
 if(!input(PUSH_BUTTON2)){
 fprintf(USER,”\n\rEntering bootloader...) “);
 #asm
 goto LOADER_ADDR;
 #endasm
 }
 if(kbhit(USER)){
 c=fgetc(USER);
 USBSerialTask(c);
 }
 USBMasterCallback();
 }
}

 This example will send a 16-bit value over the 802.15.4 MAC layer, and
display the success rate at which the message was sent. It will return an
error code, where a non-zero is an error. Until there is another unit acting
as a receiver this example will always return a NoACK error, so the success
rate displayed will always be 000%.

 Enter the following code into a new fi le called EX8.C

 Compile and run the program.

N
O

T
E

S
 ZMac_Init() initializes the ZMD44102 radio, and prepares some of the higher

level functions for sending and receiving packets. It will also set the unit’s
short address and PAN ID to 0xFFFF.

 ZMac_SetMyShortAddress(address) confi gures the receive fi lter on the
ZMD44102 radio to accept this short (16-bit) address. It also prepares the
transmit functions to use this address as the source short address.

 Although not shown, ZMac_SetMyLongAddress(*address) is also available to
set the long (64-bit) address of this unit. The receive fi lter on the radio will
accept both short and long addresses.

 According to 802.15.4, all units have a unique long address (basically a MAC
address) while the short addresses are dynamically confi gured by the network
coordinator when the node associates with the network. This tutorial will not
be using a network in these examples, so statically assigning short addresses
and PAN IDs is needed.

 Shorter packets have a higher chance of transmit success. This is why 802.15.4
has the ability to dynamically assign shorter addresses instead of using the
entire 8-byte MAC address.

 ZMac_UseMyShortAddress() tells the MAC transmit code to use the already
confi gured short address as the source address in future outgoing packets.
ZMac_UseMyLongAddress() is also provided, this will confi gure the transmit
code to use the long address.

 ZMac_PutPacket(*remoteNode, *data, count) will transmit count bytes of data
to the remoteNode. It will return 0 if OK. It will return non-zero if error (no ac-
knowledge, CSMA failed, or transmitter was not ready). With each ZMac_Put-
Packet() the 802.15.4 sequence number is incremented.

 If ZMac_PutPacket() in ZMD44102.H is inspected, notice the lower level func-
tions that it uses, such as: ZMac_PutHeader(), ZMac_Putc(), ZMac_Putd() and
ZMac_Flush(). Writing one’s own ZMac_PutPacket() may be useful if
implementing retries or to not increment the sequence number automatically.

 ZMac_PutPacket() will use the transmit settings that have already been
confi gured by ZPhy_SetChannel(), ZPhy_SetTX() and ZMac_SetTX(). See the
previous chapter for more information about these functions.

 remoteNode is a ZMAC_NODE_INFO struct, and contains the long address,
short address and PAN ID of the node to communicate to. Although the struct
can hold both the short and long address (remember, a unit can have both ad-
dresses), one must use the addressMode fi eld to specify which address to use
in the packet.

Wireless - ZMD Edition Exercise Book

CCS, Inc.

 The previous chapter created a unit that was transmitting messages to no one. This
chapter will receive the message and display the results.

 Type the following code into a new fi le and save as EX9.C.

 Compile and run on the second prototype board in the kit:

9 RECEIVING A SIMPLE MESSAGE

 Once running, it will display the number being transmitted by the other node on the
7 segment LED display.

#defi ne MyPanId 1
#defi ne MyShortAddress 2
#defi ne MyRFChannel 6
#defi ne DestShortAddress 1

#include “zmd.h”

void main(void)
{
 ZMAC_NODE_INFO remoteNode;
 int16 data, count;

 myZMacInit();

 lcd_clear();

 while(TRUE)
 {
 count=ZMac_GetPacket(&remoteNode, &data, sizeof(data), 200);
 if (count)
 lcd_putd(data);
 }
}

Wireless - ZMD Edition Exercise Book

N
O

T
E

S
 ZMac_GetPacket(*remoteNode, *ptr, max, t) will turn on the receiver for t mil-

liseconds and wait for an incoming packet. Once a packet is received, and the
packet’s destination address matches our address, remoteNode is updated
with the source node and ptr is written with the packet up to max bytes.
ZMac_GetPacket() will return the number of bytes in the payload, or zero if
there was no packet within t milliseconds. ZMac_GetPacket() will turn off the
receiver once a packet is received, regardless if t milliseconds has passed.

 If the ZMac_GetPacket() in ZMD44102.H, is inspected, note lower level API
routines used, such as: ZMac_StartRX(), ZMac_GetHeader(), ZMac_Getc().
These lower level API routines will be used in the next chapter to build a
simple packet sniff er. Use these lower level API routines if more control is
needed.

CCS, Inc.

10 PACKET SNIFFER

 A packet sniffer will view all packets transmitted and display them to the user. This
is extremely helpful in debugging applications, to determine which node or unit is not
behaving properly. The ZMD44102 can be put into a promiscuous mode where it will
accept all packets that pass CRC. This chapter will create a simple packet sniffer
application which can be used for debugging applications later.

 Add the following code to the bottom of zmd.h:

#use rs232(baud=9600, xmit=PIN_C6,rcv=PIN_C7)

void ZMac_DisplayHeader(ZMAC_HEADER *header)
{
 ZMAC_HEADER hdr;
 int8 mhr2;

 memcpy(&hdr, header, sizeof(ZMAC_HEADER));

 mhr2 = hdr.destNode.addressMode;
 mhr2 |= (hdr.sourceNode.addressMode << 4);

 printf(“MHR=%X%X SQ=%X “, (int8)hdr.frameCon, mhr2, hdr.seq);

 if (hdr.frameCon.frameType == ZMAC_FCON_TYPE_DATA)
 printf(“DATA “);
 else if (hdr.frameCon.frameType == ZMAC_FCON_TYPE_CMD)
 printf(“CMD “);
 else if (hdr.frameCon.frameType == ZMAC_FCON_TYPE_ACK)
 {
 printf(“ACK “);
 return;
 }
 else
 printf(“BEACON “);

 if (hdr.destNode.addressMode)
 {
 printf(“DPAN=%LX DADR=”, hdr.destNode.panId.w);
 if (hdr.destNode.addressMode == ZMAC_ADDRESS_MODE_SHORT)
 {
 printf(“%LX”, hdr.destNode.shortAddress.w);

(continued...)

Wireless - ZMD Edition Exercise Book

(continued...)

 }
 else
 {
 printf(“%X%X%X%X%X%X%X%X”,
 hdr.destNode.longAddress.b[0],
 hdr.destNode.longAddress.b[1],
 hdr.destNode.longAddress.b[2],
 hdr.destNode.longAddress.b[3],
 hdr.destNode.longAddress.b[4],
 hdr.destNode.longAddress.b[5],
 hdr.destNode.longAddress.b[6],
 hdr.destNode.longAddress.b[7]);
 }
 printf(“ “);
 }
 if (hdr.sourceNode.addressMode)
 {
 if (!hdr.frameCon.intraPan)
 {
 printf(“SPAN=%LX “, hdr.sourceNode.panId.w);
 }
 printf(“SADR=”);
 if (hdr.destNode.addressMode == ZMAC_ADDRESS_MODE_SHORT)
 {
 printf(“%LX”, hdr.sourceNode.shortAddress.w);
 }
 else
 {
 printf(“%X%X%X%X%X%X%X%X”,
 hdr.sourceNode.longAddress.b[0],
 hdr.sourceNode.longAddress.b[1],
 hdr.sourceNode.longAddress.b[2],
 hdr.sourceNode.longAddress.b[3],
 hdr.sourceNode.longAddress.b[4],
 hdr.sourceNode.longAddress.b[5],
 hdr.sourceNode.longAddress.b[6],
 hdr.sourceNode.longAddress.b[7]);
 }
 printf(“ “);
 }
}

#defi ne MyPanId 1
#defi ne MyShortAddress 2
#defi ne MyRFChannel 6

#include “zmd.h”

void main(void)
{
 int16 count=0;
 int8 len;
 ZMAC_HEADER hdr;

 myZMacInit();

 zmd_storeLQI(TRUE);
 ZMac_StartPromiscous();
 ZMac_StartListen();

 lcd_putd(0);

 while(TRUE) {
 restart_wdt();
 if (ZMac_IsRXReady())
 {
 count++;
 if (count>999) {count=0;}
 lcd_putd(count);

 len=ZMac_GetHeader(&hdr);

 printf(“\r\n * “);
 ZMac_DisplayHeader(&hdr);

 printf(“ DLEN=%U “,len);
 while(len--) {
 printf(“%X”,ZMac_Getc());
 }

 ZMac_DiscardRX();
 printf(“ LQI=%LX”, zmd_getLQI());
 }
 }
}

 Type in the following program, save to ex10.c, compile and run on one prototyping board:

CCS, Inc.

10 PACKET SNIFFER
(CONT.)

 While the packet sniffer is running on one board, load the transmit example from Chapter
8 on the second board. While both boards are running, inspect the serial output from the
board running EX10, and note the following:

 The entire packet is shown, including the 16-bit frame control value, the sequence
number, destination and source address. One of the trickier aspects of 802.15.4 is that
the addressing mode is dynamic, but this packet sniffer will display the proper addresses
in the packet. The ZMD44102 also appends a link quality indicator the end of each
packet, and it is displayed as well.

Wireless - ZMD Edition Exercise Book

 * MHR=6188 SQ=80 DATA DPAN=0001 DADR=0002 SADR=0001 DLEN=2 0000 LQI=043B
 * MHR=6188 SQ=81 DATA DPAN=0001 DADR=0002 SADR=0001 DLEN=2 0100 LQI=0461
 * MHR=6188 SQ=82 DATA DPAN=0001 DADR=0002 SADR=0001 DLEN=2 0200 LQI=03D5
 * MHR=6188 SQ=83 DATA DPAN=0001 DADR=0002 SADR=0001 DLEN=2 0300 LQI=0458
 * MHR=6188 SQ=84 DATA DPAN=0001 DADR=0002 SADR=0001 DLEN=2 0400 LQI=0463

CCS, Inc.

10 PACKET SNIFFER (CONT.)

N
O

T
E

S
 This example uses the lower level MAC API, whereas the previous chapter used a canned

get packet routine. This example will be benefi cial to those who need more control than
the canned get packet routine gives you.

 Although Source and Destination addresses are #defi ned at the top of the code, they are
not used since the radio is put into a promiscuous mode.

 ZMac_StartListen() turns on the receiver of the ZMD44102. It will stay on indefi nitely, un-
til ZMac_StopListen() turns it off . If sending a packet, it will switch back to RX mode after
the packet is completed.

 ZMac_StartPromiscous() disables the address fi ltering on the ZMD44102 so it will accept
all packets, as long as the packet has a good CRC. ZMac_StopPromiscous() will put the
unit back into normal mode.

 ZMac_IsRXReady() returns TRUE if there is a packet in the receive buff er that needs to be
handled.

 ZMac_GetHeader(*header) reads the 802.15.4 header and saves it to the header pointer.
It will also return the number of bytes of data left to be received (the payload). Do not call
this unless ZMac_IsRxReady() returns TRUE.

 ZMac_DisplayHeader(*header) is a special routine used only in this example – it is not
included in the API.

 ZMac_Getc() reads and returns the next character in the receive buff er. ZMac_Getd(*ptr,
count) will read count bytes from the receive buff er and store to ptr.

 ZMac_DiscardRX() will discard any remaining data left in the receive buff er, and prepare
the radio’s receive buff er for the next packet. It must be called after each packet is
received.

 zmd_storeLQI() confi gures the ZMD44102 radio to append a link quality
indicator to the end of each packet. Normally this is disabled, but for packet sniffi ng and
debugging it may be useful to turn it on so this example enables it.

 If LQI is enabled, use zmd_getLQI() to read the LQI from the end of the packet. Call this
after ZMac_DiscardRX(), and only if LQI is enabled. Normally it is disabled.

 In the previous chapters one board transmitted and the other board received. This
chapter will create an application that both sends and receives data.

 Add the following code to the bottom of zmd.h:

ZMAC_NODE_INFO txNode;

void myDynamicZMacInit(void)
{
 ZMac_Init();

 ZMac_SetMyPanId(MyPanId);
 ZMac_UseMyShortAddress();

 txNode.panId=MyPanId;
 txNode.addressMode=ZMAC_ADDRESS_MODE_SHORT;

 if (BUTTON_PRESSED())
 {
 ZMac_SetMyShortAddress(DestShortAddress);
 txNode.shortAddress=MyShortAddress;
 }
 else
 {
 ZMac_SetMyShortAddress(MyShortAddress);
 txNode.shortAddress=DestShortAddress;
 }
 ZPhy_SetChannel(MyRFChannel);
}

 Type in the following code into a new fi le called EX11.C, compile and run on both
prototyping boards:

#defi ne MyPanId 1
#defi ne MyShortAddress 1
#defi ne DestShortAddress 2
#defi ne MyRFChannel 6

#include “zmd.h”

(continued...)

Wireless - ZMD Edition Exercise Book

11 BI-DIRECTIONAL COMMUNICATION

CCS, Inc.

(continued...)

void main(void) {
 ZMAC_HEADER header;
 int to=250;
 struct
 {
 int button;
 int analog;
 } packet;
 int8 count;

 myDynamicZMacInit();

 lcd_clear();

 setup_adc_ports(AN0);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);

 ZMac_StartListen();

 while(TRUE)
 {
 if (ZMac_IsRxReady())
 {
 count=ZMac_GetHeader(&header);
 ZMac_Getd(&packet,2);

 lcd_putd(packet.analog);

 if (packet.button)
 LED_ON(PIN_LED3);
 else
 LED_OFF(PIN_LED3);

 ZMac_DiscardRX();
 }

 if (!to)
 {

(continued...)

11 BI-DIRECTIONAL COMMUNICATION
(CONT.)

Wireless - ZMD Edition Exercise Book

(continued...)

 packet.button=BUTTON_PRESSED();
 packet.analog=read_adc();

 if (!ZMac_PutPacket(&txNode,&packet,2))
 to=250;
 }
 else
 to--;

 delay_ms(1);
 }
}

 In order to prevent both nodes from having the same address, myDynamicZMacInit()
will load a different address if the button (A4) is held down during reset. Therefore
on one of the boards, hold down the button while pressing the reset button.

 While the code is running, it will transmit the A/D conversion and button state every
250 milliseconds. If another packet is received, it will display the other node’s A/D
conversion on the 7-segment LED display and the current button state (lit=pressed,
unlit=not pressed) on the red LED (A5).

 The API used for receiving is the same as discussed in Chapter 10

 Using a ZMac_PutPacket() will only temporarily disable the receiver, because
ZMac_StartListen() will leave it in RX mode until a ZMac_StopListen() is used.

N
O

T
E

S

 CCS provides a driver that can use an 802.15.4 PHY/MAC layer to create a virtual
RS232 serial link between two devices. The method used is not complex, and if
a standard, high bandwidth RS232 link over wireless is needed, Bluetooth is more
applicable.

 Enter the follow code into EX12.C, compile and run on both development boards:

#defi ne MyPanId 1
#defi ne MyShortAddress 1
#defi ne DestShortAddress 2
#defi ne MyRFChannel 6

#include “zmd.h”
#include <ZRS232.h>
void main(void) {
 myDynamicZMacInit();
 ZRS232Init();
 ZRS232Connect(txNode.shortAddress.w);

 lcd_clear();

 while(TRUE)
 {
 ZRS232Task();
 while (ZRS232kbhit())
 {
 putc(ZRS232getc());
 }
 while(kbhit())
 {
 ZRS232putc(getc());
 }
 }
}

 Similar to Chapter 11, this example uses myDynamicZMacInit() to confi gure the unit’s
address depending on the button state during reset. Therefore, when powering up one
of the units, hold down the button (A4) to make sure it has a different address than the
other unit.

CCS, Inc.

12 WIRELESS RS-R32

Wireless - ZMD Edition Exercise Book

 Connect one unit to a PC using a serial PC to prototype board cable (see item 3 on the
diagram in Chapter 2), which for this example will be called Node A. Connect the other
unit to another PC using a serial PC to protoype board cable, which for this example
will be called Node B. On both PCs open the COMM port the serial PC to prototype
board cable is connected to using a serial terminal program, the CCS SIOW or Microsoft
Hyperterminal will suffi ce. On both PCs, confi gure the serial baud rate to 9600, 8 data
bits, 1 stop bit and no parity.

 While this example is running, pressing a key on Node A’s PC will result in the key being
shown on Node B’s PC, and vice-versa. This demonstrates creating a simple RS-232
link without wires.

N
O

T
E

S

 ZRS232Init() initializes the 802.15.4 library for use. It should be called be-
fore any other ZRS232 functions.

 ZRS232Connect(address) confi gures the ZRS232 to send and re-
ceive packets to only this node. This library only uses short addresses.
ZRS232Connect() also turns on the receiver.

 ZRS232Task() checks the 802.15.4 receive buffer for incoming characters. It
also checks the transmit buffer to see if any characters need to be sent.

 If there is data in the receive buffer when ZRS232Task() is called, it will be
discarded to make room for any future packets. Therefore, any data in the
receive buffer must be dealt with before the next ZRS232Task().

 If there is data in the transmit buffer when ZRS232Task() is called, it will at-
tempt to transmit the packet. If there was no collision detection and an ack
was detected, then the transmit buffer is cleared to make space for new data.
If there was a collision detection or no ack it will retry later, but if there are too
many retries it will eventually discard the data.

 ZRS232kbhit() returns TRUE if there are any characters in the ZRS232
receive buffer.

 ZRS232getc() returns the next character in the ZRS232 receive buffer. If
calling this when ZRS232kbhit() returns FALSE, the result of ZRS232getc()
will be invalid.

 ZRS232putc(character) puts the character into a transmit buffer. It will return
TRUE if there was space in the transmit buffer for this character.

 Although not shown, ZRS232Flush() will force the transmit the data in the
transmit buffer. It will return TRUE if the data was sent successfully (no col-
lision and an ACK was received). It will retry many times, and the process
can take several hundred milliseconds. This is useful if one wants to send
lots of data in between ZRS232Task()s.

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small debug
program in the chip. This is a basic debug tool that takes up some of the chip’s resources (I/O
pins and memory). An emulator replaces the chip with a special connector that connects to a unit
that emulates the chip. The debugging works in a simulator manner except that the chip has all of
its normal resources, the debugger runs faster and there are more debug features. For example
an emulator typically will allow any number of breakpoints. Some of the emulators can break on
an external event like some signal on the target board changing. Some emulators can break on
an external event like some that were executed before a breakpoint was reached. Emulators cost
between $500 and $3000 depending on the chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand alone
device programmer may be used to program all the chips. These programmers will use the .HEX
file output from the compiler to do the programming. Many standard EEPROM programmers do
know how to program the Microchip parts. There are a large number of Microchip only device
programmers in the $100-$200 price range. Note that some chips can be programmed once
(OTP) and some parts need to be erased under a UV light before they can be re-programmed
(Windowed). CCS offers the Mach X which is a stand-alone programmer and can be used as an
in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources. Some
have an ICD interface and others simply have a socket for a chip that is externally programmed.
Some boards have some advanced functionality on the board to help design complex software.
For example, CCS has a Prototyping board with a full 56K modem on board and a TCP/IP stack
chip ready to run internet applications such as an e-mail sending program or a mini web server.
Another Prototyping board from CCS has a USB interface chip, making it easy to start developing
USB application programs.

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip. A
simulator offers all the normal debug capability such as single stepping and looking at variables,
however there is no interaction with real hardware. This works well if you want to test a math
function but not so good if you want to test an interface to another chip. With the availability of low
cost tools, such as the ICD in this kit, there is less interest in simulators. Microchip offers a free
simulator that can be downloaded from their web site. Some other vendors offer simulators as a
part of their development packages.

References

 Figure 5.5 - ZMD44102 Datasheet
 http://www.zmd.de/zigbee.php?content=zig&product=zmd44102.

Comprehensive list of PIC® MCU
Development tools and information

www.mcuspace.com

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

On The Web

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
 · Specify operational settings at the execution level
 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface
 · Simply point, click and program
 · Additions to HEX file organization include associating comments or a graphic image
 to a file to better ensure proper file selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics
 · Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specific driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a file list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™
 · All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help file for additional assistance.

RS-232
C6, C7

+ B4 C0 A2 A5 D1 G

- B2 B5 A1 A4 D0 G

Button A4

ICD Connector

Reset

Power*
9 VDC

*Use only one power source, either wall adapter or battery.

Pot A0

+

-

ZMD Radio
Module

PIC18LF452

B4 B5 A5

