
Development Kit
For the PIC® MCU

Exercise Book

USB
March 2010

Copyright © 2010 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

CCS, Inc.

UNPACKING AND INSTALLATION1
Inventory

 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must
have a spare 9 pin serial port, a CD-ROM drive and 75 MB of disk space.

 The diagram on the following page shows each component in this kit. Make sure all items are present.

Software
 Insert the CD into the computer and wait for the install program to start. If your computer

is not set up to auto-run CDs, then select My Computer and double-click on the CD drive.

 Click on Install and use the default settings for all subsequent prompts. Click NEXT, OK,
CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will have
created an empty directory c:\program fi les\picc\projects that may be used for this purpose.

 Select the compiler icon on the desktop. In the PCW IDE click Help>About and verify
a version number. This is shown for the IDE and/or PCM. This ensures the software is
installed properly. Exit the software.

Hardware
 Connect the PC to the ICD using the USB cable.(1) Connect the prototyping board (10)

to the ICD using the modular cable. Plug in the AC adaptor to the power socket and plug
it into the prototyping board. The fi rst time the ICD-U is connected to the PC Windows
would detect new hardware. Install the USB driver from the CD or website using the new
hardware wizard. The driver needs to be installed properly before the device can be used.

 The LED should be red(2) on the ICD-U to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the
desktop. Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LED should be
illuminated green. If any errors are detected, go to Diagnostic tab. If all tests pass, the
hardware is installed properly.

 Disconnect the hardware until you are ready for Exercise 3. Always disconnect the
power to the prototype board before connection/disconnecting the ICD or changing the
jumper wires to the prototype board.

(1) ICS-S40 can also be used in place of ICD-U. Connect it to an available serial port on the PC using the
9 pin serial cable. There is no driver required for S40.

(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

USB Exercise Book

CD-Rom of Examples
 This CD-ROM contains example source code for PIC18F4550, PC source code and

Windows operating system drivers.

 Unzip USB.zip and unpack it to C:\USBPIC

1 Storage box
2 Exercise Booklet
3 CD-ROM of Compiler Software
4 Serial PC to Prototype Cable
5 Modular Cable (ICD to Prototyping Board)
6 ICD unit allows programming and debugging
 PICmicro® MCU parts from a PC
7 Two USB Cables (PC to Prototyping Board; ICD to PC)
8 AC Adaptor (9VDC)
9 USB Prototyping Board

ICD-U64

1

ICD-U64

CCS, Inc.

2 USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: c:\program fi les\picc\examples\ex_
stwt.c

 Scroll down to the bottom of this fi le. Notice the editor shows comments,
preprocessor directives and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a help fi le
description for set_timer0 appears. The cursor may be placed on any keyword or
built-in function and F1 will fi nd help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various
standard cut, paste and copy functions.

 Review the editor option settings by clicking on Options>Editor Properties. The
IDE allows selection of the tab size, editor colors, font and many more. Click on
Options>Toolbar to select which icons appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different

compilers for each family of Microchip parts. All the exercise in this booklet are for
the PIC18F4550 chip, an 16-bit opcode part. Make sure PCH 16 bit is selected in the
drop-down box under the Compiler tab.

 The main program compiled is always shown in the bottom of the IDE. If this is not
the fi le you want to compile, then click on the tab of the fi le you want to compile.
Right click into editor and select Make fi le project.

 Click Options>Project Options>Include Files… and review the list of directories
the compiler uses to search for included fi les. The install program should have put
two directories in this list: devices and drivers.

 Normally the fi le formats need not be changed and global defi nes are not used in
these exercises. To review these setting, click Options>Project Options>Output
Files and Options>Project Options>Global Defi nes.

 Click Compile>Compile or the compile icon to compile. Notice the compilation box
shows the fi les created and the amount of ROM and RAM used by this program.
Press any key to remove the compilation box.

USB Exercise Book

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the micro-controller

is used. Identifiers that start with @ are compiler generated variables. Notice some
locations are used by more than one item. This is because those variables are not
active at the same time.

 Click Compile>C/ASM list. This file shows the original C code and the assembly
code generated for the C. Scroll down to the line:
 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal.
The second instruction moves W into memory. Switch to the Symbol Map to find the
memory location is where int_count is located.

 Click View>Data Sheet, then OK. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files and Projects are created,
opened, or closed using this menu.

Place cursor here for slide out boxes.
All of the current project’s source and
output files can be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using
this menu.

Compiles current selected unit, does NOT link/build
into a HEX file.

Quick view of supported devices.

Compiles all units that have changed since last build,
links/builds into a HEX file.

Compiles all units regardless if they have changed since
last build, links/builds into a HEX file.

CCS, Inc.

3 COMPILING AND
RUNNING A PROGRAM

 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>New>Source File and enter the fi lename EX3.C

 Type in the following program and Compile.

#include <18F4550.h>
#fuses HS,NOLVP,NOWDT,PUT
#use delay (clock=20000000)

#defi ne GREEN_LED PIN_A5

main () {
 while (TRUE) {
 output_low (GREEN_LED);
 delay_ms (1000);
 output_high (GREEN_LED);
 delay_ms (1000);
 }
}

N
O

T
E

S

 The fi rst three lines of this program defi ne the basic hardware environ-
ment. The chip being used is the PIC18F4550, running at 20Mhz.

 The #defi ne is used to enhance readability by referring to GREEN_LED
in the program instead of PIN_B5.

 The “while (TRUE)” is a simple way to create a loop that never stops.

 Note that the “output_low” turns the LED on because the other end of
the LED is +5V. This is done because the chip can tolerate more current
when a pin is low than it can source when it is high.

 The “delay_ms(1000)” is a one second delay (1000 milliseconds).

USB Exercise Book

 Connect the ICD to the Prototyping board using the modular cable, and connect the ICD
to the PC. Power up the Prototyping board.

 Click Debug>Enable Debugger and wait for the program to load.

 If you are using the ICD-U40 and the debugger cannot communicate to the ICD unit go
to the debug configure tab and make sure ICD-USB from the list box is selected.

 Click the green go icon:

 Expect the debugger window status block to turn yellow indicating the program is
running.

 The green LED on the Prototyping board should be flashing. One second on and one
second off.

 The program can be stopped by clicking on the stop icon:

Before Moving On:

 Remove the 9V DC power supply and change the jumper on the prototype board to
configure the device for bus power.

ICD-U64

CCS, Inc.

Universal Serial Bus (USB) is an interface designed for personal computers. USB
employs a master/slave protocol where the PC is the master and controls and schedules
all USB communications. The USB devices are slaves that respond to host commands.
USB devices cannot talk to other USB devices, only to the master. USB allows up to 127
devices to be connected to one PC.
Modern day PCs include a host controller, which provide the root USB hub from which
you can attach your USB devices. To allow more connections, you may attach another
external hub to the PC, which add more USB ports. USB hubs (including the host
controller in your PC) can provide up to 500mA of power (at 5V) to a USB device.
USB 1.x provides for two bandwidths, low-speed at 1.5Mbit/s and full-speed at 12Mbit/s.
USB 2.x provides for fast-speed at 480Mbit/s. These are maximum bus speeds, under
ideal conditions the actual performance will be much lower. Since many devices can
be attached to the PC at once it is the host controller’s duty to allocate the bandwidth to
each device. For example, if there are two full-speed devices connected to the PC the
host controller may allocate 10Mbit/s to one device and 2Mbit/s to the other device. The
bus always uses the slowest speed possible, for example if you connect a low-speed and
a full-speed device to the PC then both devices must use the low-speed. (Some hubs
may get around this problem, but it is something to be aware of).
Data on the USB fl ows in two directions relative to the PC, incoming from a device and
outgoing to a device. OUT messages refer to the outgoing message from the PC, and
IN messages refer to the incoming message from a device to the PC. Any time there is
reference to an OUT or IN message, always use the direction relative to the PC.
Data transmission between the host and the devices uses endpoints. An endpoint can
be considered a logical sink or source of data on the USB device. Each endpoint can
be confi gured differently for bandwidth needed, max transmission size, etc. Each device
always has one bidirectional endpoint, labeled endpoint 0, which is reserved for control
transfers. Devices may have up to 30 endpoints, 15 for receiving and 15 for transmitting.
At the lowest level, an endpoint is a buffer that stores incoming or outgoing messages.
Incoming messages (Device to PC) will sit in the buffer until the PC polls the device.
Outgoing messages (PC to Device) will sit in the buffer until the device has had a chance
to read the data, at which point the endpoint will be ready to accept more data. If the PC
attempts to send data to an endpoint that still has data in the buffer, the device will send a
NAK and the PC will retry later.
There are four different USB message types:

 Control Transfers – Control transfers are used to transfer small blocks of
information. Each device must support control transfers. Control messages are
guaranteed to have 10% of the USB bandwidth. Control transfers are mostly
used to send SETUP tokens, which the PC uses to set and get confi guration from
the USB device. The following are SETUP request types:

4 USB OVERVIEW

USB Exercise Book

 Bulk Transfers – Bulk transfers are used to send large blocks of data, or to send
non-periodic data. Bulk transfers is the most ideal transfer method for large
blocks of data because this transfer is deferred to other message types to prevent
the bus bandwidth from getting full. Also, when the bus is idle bulk transfers are
allowed to use up to 95% of the bus for messages, which is more than any other
message type. Since no bandwidth is reserved for bulk transfers, this is not ideal
for sending data at a timely rate.

 Interrupt Transfers – Interrupt transfers are used to transfer small blocks of
information quickly. Interrupt does not mean it will interrupt the microcontroller
or PC, it means that the PC tries to send/receive the data with minimal delay.
Interrupt transfers can use up to 90% of the bus bandwidth.

 Isochronous Transfers – Isochronous transfers are used to transfer blocks of
information at a periodic rate of time. The opposite of bulk transfers, isochronous
transfers are sent at a specified period. Since data must be sent at a specified
period, there is no error checking because there would be no time to retransmit a
failed message. Isochronous messages can take up to 90% of bus bandwidth.

Each USB device has several descriptors which describe the device and fall under the
following categories: device descriptors, configuration descriptors, interface descriptors,
endpoint descriptors and string descriptors. For more information about these descriptors
please see Chapter 10.
USB is a very in-depth subject, detailing it all is not in the scope of this tutorial. Please
see other documentation for more USB details.

Request Req. Number Description
Get_Status 0x00 Host requests current set feature
Clear_Feature 0x01 Host requests to disable feature on device,

interface or endpoint
Set_Feature 0x03 Host requests to enable a feature on device,

interface or endpoint

Set_Address 0x05 Host specifies an address for USB device,
values range from 1 to 127

Get_Descriptor 0x06 Host requests a descriptor
Set_Descriptor 0x07 Host sets a descriptor (Optional)
Get_Configuration 0x08 Host requests current configuration
Set_Configuration 0x09 Host specifies which configuration to use
Get_Interface 0x0A Host requests current interface
Set_Interface 0x0B Host specifies which interface device is supposed to use
Synch_Frame 0x0C Device sets and reports an endpoint’s synch frame

CCS, Inc.

The CCS USB prototype board provides a PIC18F4550. The PIC18F4550 includes an
internal full speed (12Mbit/s) USB peripheral, support for 16 bi-directional endpoints, and 768
bytes of RAM reserved for endpoint buffers.
The USB Development Kit contains a PC cable, which is an RS232 cable with a modifi ed
connector on the prototyping board. Connect this cable to the prototyping board and the
PC, and then run a serial program. PCW and PCWH includes one which can be opened by
selecting Tools > Serial Port Monitor. Any instance of printf(), getc(), etc uses this RS232
connection.
The USB prototyping board provides a jumper for confi guring between a self powered USB
device or a BUS powered device. If a self powered device is jumped, the 9V DC power
supply must also be connected to the device. The prototyping board has a push button
switch on RA4, a potentiometer on RA0 and three LEDs on RA5, RB4 and RB5.

5 USB PROTOTYPE BOARD

USB Exercise Book

CCS provides, for all CCS C Compiler customers, an API for developing USB
applications on the PIC. There are several files associated with the USB API that are
used:
 pic18_usb.h - Provides hardware layer functions for Microchip PIC18

microcontrollers that have a built-in USB peripheral, such as the PIC18F4550. This
provides functions for setting up the peripheral, sending and receiving packets,etc.

 usbn960x.c - Provides hardware layer functions for National’s USB960x line of
USB peripherals. This provides functions for setting up the peripheral, sending and
receiving packets, etc. Since this tutorial focuses on the development kit with a
PIC18F4550, this driver will not be used in this tutorial.

 pic_usb.h - Provides hardware layer functions for Microchip 14-bit microcontrollers
that have a built-in USB peripheral, such as the PIC16C745 or PIC16C765. This
provides functions for setting up the peripheral, sending and receiving packets, etc.
Since this tutorial focuses on the development kit with a PIC18F4550, this driver will
not be used in this tutorial.

 usb.c - Using an interrupt driven by the hardware,this provides token handler
support. The bulk of this fi le automatically handles and responds to the SETUP
tokens used by the PC to confi gure the USB device, also known as “Chapter
9 Requests.” (“Chapter 9 Requests” because Chapter 9 of the offi cial USB
documentation details SETUP messages.)

 usb.h – Prototypes, global defi nes and conditional compile statements used in
conjunction with usb.c There are some global defi nitions made here that can be
changed to alter the USB API to an application.

 usb_desc_*.h - Provides example device, configuration, interface, endpoint and
string descriptors needed to describe the USB devices used in the examples.
The SETUP handler in usb.c will use these descriptors to answer Get_Descriptor
requests. Since USB descriptors are application dependent, there is a different
descriptor for each example program.

 ex_usb_*.c – Example programs that demonstrate common USB applications such
as mice, virtual COM ports and generic vendor-specifi c protocols.

6 CCS USB API

CCS, Inc.

7 ENUMERATION

 Enumeration is the process in which operating systems, such as Microsoft Windows,
learn about the USB device and load the appropriate driver. Below is a summary of the
process an operating system takes to enumerate a device:
1. Device is plugged into USB port. (Or the system powers up with the device already

plugged into the USB port).
2. The system detects the device because of the voltage change on the D+ and D-

lines. (The D+ and D- are the differential data lines of a USB cable). It also detects
the device’s speed based on the voltages represented on D+ and D-.

3. System sends a reset signal by holding D+ and D- low for about 10 milli-seconds.
The device will now be set to address 0.

4. The system sends a Get_Descriptor request to learn the max packet size of
Endpoint 0 of the device at address 0. Because only one device can enumerate at
once, only one device will be at address 0. All enumeration communications use
Endpoint 0.

5. The system assigns an address between 1 and 127 for the device. No two devices
can have the same address.

6. The system uses a number of Get_Descriptor requests to read all of the
confi guration descriptors present on the USB device.

7. Using the confi guration descriptors, the system loads the proper device drivers.
8. The system assigns the USB device a confi guration. Since many devices can

have more than one confi guration, the device needs to be told by the system what
confi guration to use. (See Chapter 9 of this tutorial for more information). At this
point the USB device is operational.

The bulk of the enumeration processes is Step 6 and Step 8, where the system uses
control transfers on Endpoint 0 to send “Chapter 9 Requests” to the device. The CCS
USB stack automatically processes the “Chapter 9 Requests.”
The following example simply confi gures the PIC to be a USB device. When the PC
connects to the PIC via USB, the operating system will enumerate the USB device.
Remove the 9V DC power supply, if connected, and insert a jumper to confi gure the
device to be self powered.

 Type in the following program, named ex7.c

USB Exercise Book

#include <18F4550.h>
#fuses HSPLL,NOWDT,NOPROTECT,NOLVP,NODEBUG,USBDIV,PLL5,CPUDIV1,VREGEN
#use delay(clock=48000000)

#defi ne LED1 PIN_A5
#defi ne LED2 PIN_B4
#defi ne LED3 PIN_B5
#DEFINE BUTTON PIN_A4
#defi ne LED_ON output_low
#defi ne LED_OFF output_high

#defi ne USB_EP1_TX_ENABLE USB_ENABLE_INTERRUPT
#defi ne USB_EP1_TX_SIZE 8

#defi ne USB_EP1_RX_ENABLE USB_ENABLE_INTERRUPT
#defi ne USB_EP1_RX_SIZE 8

#include <pic18_usb.h>
#include <usb_desc_hid.h>
#include <usb.c>

void main(void) {
 LED_ON(LED1);
 LED_OFF(LED2);
 LED_OFF(LED3);

 usb_init();

 while (TRUE) {
 if (usb_enumerated())
 LED_ON(LED3);
 else
 LED_OFF(LED3);
 }
}

 While this program is running, LED1 will light indicating the unit is powered.
A few seconds later LED3 will light signifying the device has successfully been
enumerated by the PC.

 If a HID device has never been plugged into the PC, there may be a prompt to install HID
drivers on the operating system. (See Appendix-A for help with installing HID drivers.)

CCS, Inc.

7 ENUMERATION, CONTINUED

 If the HID drivers are installed and the USB prototyping board is working correctly,
Windows Device Manager should list HID-compliant device under Human Interface
Devices.

 When the USB prototyping board is connected to the PC with the USB cable, LED3
turns on. After un-confi guring the USB device, LED3 should turn off. A PC USB protocol
analyzer can be used to confi gure and un-confi gure the device.

 If LED3 does not turn on or the HID-compliant device under Windows Device Manager
does not appear, one of the following may be wrong:

 The USB cable is not connected from the PC to the USB Prototyping board.
 The USB Prototyping board is not powered up. Check to ensure the jumper on the

prototyping board is set to bus power mode.
 The microcontroller on the USB Prototyping board was not programmed correctly

with an ICD or other programming device. See Chapter 3.
 USB is not working correctly, or disabled on the PC. Check the Operating System

and BIOS settings.

USB Exercise Book

Before Moving On:

For future examples copy the fi rst 10 lines in this ex7.c into an include fi le
named CCSUSB.H.

N
O

T
E

S
 PIC18-usb.h includes all the hardware layer functions needed to send

and receive USB packets using the PIC18F4550
 usb.c provides all the functions needed to respond to control messages

on endpoint 0. While the example provided looks simple, a lot of USB
handling is done during the USB interrupt behind the scenes that does
not require user intervention.

 usb_init() initializes the PIC18F4550 device and must be called at
power-up before any other USB functions are used.

 usb_init() enables interrupts. During the interrupt, the USB fi rmware
processes IN and OUT messages and handles any control messages.
Keep this in mind when writing any time sensitive code as the USB
fi rmware may interrupt it.

 The CCS USB fi rmware defaults the code to be a HID device.
Windows and many popular operating systems should have HID
drivers already installed or on the operating system install CD. If
needed, the USB and HID drivers may need to be installed the fi rst
time the device is plugged in. Follow the documentation provided by
the operating system.

 usb_enumerated() returns TRUE once the PC has enumerated the device
and specifi ed which confi guration to run.

 Many USB transactions require low latency to operate correctly, so
traditional debugging methods may not be applicable since the delays
introduced through debugging may break the USB code. For these
reasons the best way to debug a USB device is to get a protocol
analyzer. USB analyzers in hardware may be expensive, but a
cheaper alternative might be in software.

 USB_EP1_TX_ENABLE, USB_EP1_RX_ENABLE, USB_EP1_TX_SIZE and USB_
EP1_RX_SIZE dynamically confi gure the USB stack to enable endpoint 1 for
IN and OUT transfers, and allocate two 8 byte buff ers for them. Although
we are not using endpoint 1, we have created a USB HID device that can
send and transmit messages on endpoint 1. This will be covered in Chapter
9 of this tutorial. These endpoints have enabled even though they are not
being used because the simple descriptor fi le included (ex_usb_hid.h)
requires them to be enabled.

CCS, Inc.

8 CONNECTION SENSE

 Chapter 7 showed a simple demonstration of creating a USB device on a Microchip
microcontroller, and connecting it to the PC via USB. For that example, the jumper on
the prototyping board was confi gured to be bus powered; meaning the unit was powered
via the 5 volts provided by the USB bus. Move the jumper so the unit is self-powered and
connect a 9V DC power supply to the unit. Connect a USB cable to the device, and upon
successful enumeration LED3 should turn green, meaning it is enumerated. However, by
disconnecting the USB cable, LED3 stays green. Without connection sense the unit does
not know if the unit is still connected, and it can only assume that it is.

 The following example uses the connection sense code in the USB stack to un-confi gure
the device when it is no longer connected.

 Type in the following program, named ex8.c.
 Compile and run the program.

#include “CCSUSB.H”

#defi ne USB_CON_SENSE_PIN PIN_B2

#defi ne USB_EP1_TX_ENABLE USB_ENABLE_INTERRUPT
#defi ne USB_EP1_TX_SIZE 8

#defi ne USB_EP1_RX_ENABLE USB_ENABLE_INTERRUPT
#defi ne USB_EP1_RX_SIZE 8

#include <pic18_usb.h>
#include <usb_desc_hid.h>
#include <usb.c>

void main(void) {
 LED_ON(LED1);
 LED_OFF(LED2);
 LED_OFF(LED3);

 usb_init_cs();

 while (TRUE) {
 usb_task();

 if (usb_attached())
 LED_ON(LED2);
 else
 LED_OFF(LED2);

 if (usb_enumerated())
 LED_ON(LED3);
 else
 LED_OFF(LED3);
 }
}

USB Exercise Book

 The example operates like the example in chapter 7, but code has been written to light
LED2 if the microcontroller is connected to USB.

N
O

T
E

S

 usb_init_cs() is similar to usb_init(), but usb_init_cs() will not enable the
USB peripheral and will not enable USB interrupts.

 usb_task() keeps an eye of the connection sense pin. If the USB
peripheral is disabled and the unit is connected to USB, usb_task()
enables the USB peripheral and enables the USB interrupts. If the USB
peripheral is enabled and the unit is dettached from USB, usb_task()
disables the USB peripheral and disables the USB interrupts.

 When writing code that uses connection sense, periodically call
usb_task(). It is best to put it in the main loop, as this example
has done.

 USB_CON_SENSE_PIN confi gures the pin associated with connection
sense. On the USB Development kit sold by CCS RB2 is the
connection sense pin, and is connected as follows:

Before Moving On:

 The remaining examples will use bus power. Connection sense will not be
necessary. Remove the 9V DC power supply and change the jumper on the
prototype board to confi gure the device for bus power.

CCS, Inc.

 USB devices require a device driver installed on the operating system before the PC
can talk to the USB device. Human Interface Device, or HID, devices were the fi rst
USB devices to have full support in Microsoft Windows and the drivers are built into
the system. HID was designed as a general purpose class to support any number
of human interface devices, but it can be used for any purpose as long as your
design can function in the limits of HID. Since the drivers are built into the operating
system, it is great way to develop simple USB devices quickly.

 HID devices have the following limitations:
 Data is sent using control or interrupt transfers. HID cannot use bulk or
 isochronous transfers.
 A full-speed device can only send 64-bytes per transaction. A low-speed
 device can only send 8-bytes per transaction.
 A report (message) cannot be larger than 255 bytes.
 A full-speed device can have no more than 1 transaction per 1 millisecond (or
 64,000 bytes/second). A slow-speed device can have no more than 1
 transaction per 10 milliseconds (or 800 bytes/second)
 No guaranteed rate of transfer.

 To confi gure a device to be a HID device, the descriptors must be confi gured to
describe the device as a HID device. Also, two new descriptors must be added:
a HID class descriptor and the HID report descriptor. The HID class descriptor
documents information about the HID device, such as country code and the size of
the report descriptor. The HID report descriptor explains the format of all incoming
and outgoing messages so the general purpose HID device driver knows how to
handle the data. See Chapter 10 of this tutorial book for more information about
descriptors.

 The following example confi gures the microcontroller to be a HID device, which will
transmit two bytes to the microcontroller at a constant interval. The PIC can also
receive two bytes from the PC. The PC will use the standard Windows HID device
driver to communicate with the device, and an example CCS Windows application
displays the data.

 Type in the following program, named ex9.c.

9 HUMAN INTERFACE DEVICES

USB Exercise Book

 Compile and run the program.

#include “CCSUSB.H”

#defi ne USB_EP1_TX_ENABLE USB_ENABLE_INTERRUPT
#defi ne USB_EP1_TX_SIZE 8

#defi ne USB_EP1_RX_ENABLE USB_ENABLE_INTERRUPT
#defi ne USB_EP1_RX_SIZE 8

#include <pic18_usb.h>
#include <usb_desc_hid.h>
#include <usb.c>

void main(void) {
 int8 delay=0;
 int8 out[2];
 int8 in[2];

 LED_OFF(LED1);
 LED_OFF(LED2);
 LED_OFF(LED3);

 setup_adc(ADC_CLOCK_INTERNAL);
 setup_adc_ports(AN0);
 set_adc_channel(0);

 usb_init();

 while (TRUE) {
 if (usb_enumerated()) {
 LED_ON(LED1);

 delay++;
 if (delay>=250) {
 delay=0;
 out[0]=read_adc();
 out[1]=!input(BUTTON);
 usb_put_packet(1,out,2,USB_DTS_TOGGLE);
 }

 if (usb_kbhit(1)) {
 usb_get_packet(1,in,2);
 if (in[0]) {LED_ON(LED2);} else {LED_OFF(LED2);}
 if (in[1]) {LED_ON(LED3);} else {LED_OFF(LED3);}
 }

 delay_ms(1);
 }
 else
 LED_OFF(LED1);
 }
}

CCS, Inc.

9 HUMAN INTERFACE
DEVICES, CONTINUED

 Run HIDDEMO.EXE, which is also included with this tutorial. HIDDEMO.EXE
should be located in C:\USBPIC (or the location where the USB.ZIP was extracted
to). HIDDEMO is an example USB application that uses the default HID drivers to
communicate with the CCS USB Prototyping board running ex9.c. In HIDDEMO,
select File -> Select Device from the toolbar.. Another window will pop-up. On this
new window highlight CCS HID Demo and press the Select button. On the HID-
DEMO window now press the Establish Connection button.

 The right side of the HIDDEMO application represents data that the USB Prototyping
board is sending. By moving the potentiometer on the prototyping board, the A/D
voltage displayed in HIDDEMO should change as a result. Also, pressing the button
next to the LEDs should cause the Button State icon in the HIDDEMO to change.

 The left side of the HIDDEMO application represents messages that can be sent to
the USB prototyping board. This pane allows for the LEDs on the prototyping board
to be turned on and off by changing the radio buttons marked ON and OFF.

N
O

T
E

S

 This example sends two bytes and receives two bytes. This is in
accordance with the HID report descriptor, which details the format of the
messages the HID device driver expects to receive and transmit. The
default descriptors provided by CCS are located in usb_desc_hid.c. If
different amounts of data are desired to be sent or received, the HID report
descriptor must be changed.

 The source code for HIDDEMO is also provided on the examples disk to
provide an example of how to develop applications on the PC side.

 Usb_kbhit(endpoint) returns true if there is USB data in the receive
buffer for that endpoint. Each endpoint has its own buffer.

 usb_get_packet(endpoint, dest, len) copies the data in the USB receive
buffer to dest, and then marks the receive buffer as ready to receive more
data. Until you get the packet out of the buffer, any attempt by the PC to
write more data to this endpoint will result in a NAK packet and the PC will
try again. If using an interrupt control method, the PC will try again in the
next polling interval as specifi ed in the endpoint descriptor.

USB Exercise Book

 If a message is smaller than the packet size of this endpoint, USB_PUT_PACKET()
needs to be called only once. If a message is the same size or larger of the maximum
packet size of the endpoint, then USB_PUT_PACKET() must be used to send a 0 length
end of message marker.

 For example, if maximum packet size is 8:

Sending a 4 byte message
Packet 1 B1 B2 B3 B4 Len = 4

Sending an 8 byte message
Packet 1 B1 B2 B3 B4 B5 B6 B7 B8 Len = 8

Packet 2 Len = 0

Sending a 10 byte message
Packet 1 B1 B2 B3 B4 B5 B6 B7 B8 Len = 8

Packet 2 B9 B10 Len = 2

N
O

T
E

S
 Usb_put_packet(endpoint, source, len, toggle) copes data from source into

the USB transmit buffer. The data will sit in the USB transmit buffer until the
host PC retrieves it. Usb_put_packet() returns TRUE if the data was copied
successfully to the buffer, and will return FALSE if the data was not copied
successfully because there is still data in the buffer waiting to be transmitted.

 Usb_put_packet() transmits just one packet to the host PC. A packet is not
always a full message. If the message is larger than the maximum packet
size defi ned in the descriptor, the message must be sent over multiple
packets. To act as an end of message marker, a zero length packet must be
sent if the last packet is equal to the size of the maximum packet length.

CCS, Inc.

10 HID MOUSE

 Earlier in this tutorial Descriptors were briefl y mentioned as the mechanism that the
PC Operating System uses to learn about the USB device. There are six different
kinds of Descriptors:

 A USB device can contain several confi gurations, with each confi guration needing
a different Confi guration Descriptor. Each Confi guration Descriptor can then have
more than one interface, with each interface requiring its own Interface Descriptor.
This descriptor hierarchy branches down to the Endpoint descriptor.

Device Only one Device descriptor is present for each USB
device. Holds confi guration information such as what version
of USB (1.x, 2.x, etc) this device runs under, pointers to
String descriptors, Vendor ID, Product ID and the number of
Confi guration Descriptors

Confi guration Contains information about power usage (if powered over USB
bus), and contains one or more Interface Descriptor. There may
be more than one Confi guration descriptor for more than one
confi guration mode.

Interface Contains information about how many endpoints this interface
has, what class this interface is, and if this interface supports Boot
protocol. (Boot protocol lets the BIOS use a Mouse or Keyboard
without the operating system loading drivers)

Class Contains information about what class this interface is, number of
report descriptors, and length of report descriptor. Most common
Class is the HID class.

Endpoint Contains information about the endpoint, such as its address,
transfer type, max packet size and polling interval.

String A Unicode string that acts as a description for another descriptor.
For example, the Device descriptor has a pointer to a device name
descriptor which Microsoft Windows displays in the Add Device
Wizard.

Report Contains information about how data sent and received by this
device should be handled by the class driver on the host PC’s
operating system. In the case of HID, tells the HID driver on the
PC what kind of data the device is sending.

USB Exercise Book

 Here is an example descriptor hierarchy:
 Device

Config 1 (Max Power)
 Interface 1 (HID Mouse)
 Class Descriptor
 Endpoint Descriptor (Address 0x81, IN to PC)
 HID Report Descriptor
 Interface 2 (HID Keyboard)
 Class Descriptor
 Endpoint Descriptor (Address 0x82, IN to PC)
 HID Report Descriptor
 Interface 3 (Keyboard/Mouse LED Control)
 Endpoint Descriptor (Address 0x01, OUT to Device)
 Endpoint Descriptor (Address 0x83, IN to PC)
Config 2 (Low Power)
 Interface 1 (Mouse)
 Class Descriptor
 Endpoint Descriptor (Address 0x81, IN to PC)
 HID Report Descriptor

 This USB device has two Config Descriptors for two possible configurations: low
power mode and full power mode. Since a USB Hub has to allocate power to
many devices it is common for USB devices to include more than one power mode
configuration in the event the HUB runs out of power. The USB Hub knows the
power needs for each configuration because the power need is detailed in the
Config Descriptor. It is the device’s job, and therefore the firmware’s job, to know
what configuration the USB Hub puts the device into and act accordingly.

 The maximum power configuration has three integrated interfaces: A HID keyboard,
a HID mouse and LED control. Each interface has its own Interface Descriptor, and
each Interface Descriptor than has its own Endpoint Descriptor. Since the Mouse
and Keyboard are HID devices, they require Class and HID Report descriptors.

 Each endpoint can be configured for different transfer methods; for example the
Mouse endpoint may be isochronous, the keyboard endpoint could be bulk, one of
the LED control endpoints could be interrupt, and the other LED control endpoint
could be bulk. The physical endpoint address 0x01 points to the OUT endpoint 1,
while 0x81 is for IN endpoint 1.

 The low power configuration has only a HID Mouse interface. Since the other
interfaces are not used, the firmware can turn them off in an attempt to save power.

CCS, Inc.

10 HID MOUSE, CONTINUED

 Although this hierarchy is complex, most applications will only use one confi guration and
one interface. All examples in this book use one confi guration and one interface.

 For an example of a two interface device, see ex_usb_kbmouse.c in the examples
directory where the CCS Compiler, is installed.

 The goal in this chapter is to create a USB Mouse using the HID drivers. In the previous
chapter a generic device was created that sent two bytes of data over USB, which
could then be read on the host PC by using the standard HID drivers. Since the USB
HID Descriptor details the format of the data to the HID driver, changing the previous
example to a Mouse mostly requires a change to the HID Descriptor.

 Here is the old HID Report Descriptor side-by-side with the new HID Report Descriptor
which will tell the HID driver to format received data as mouse data:

Example 9 USB HID Mouse
0x06, 0x00, 0xFF, // Usage Page = Vendor
0x09, 0x01, // Usage = IO device
0xa1, 0x01, // Collection = Application
0x19, 0x01, // Usage minimum
0x29, 0x08, // Usage maximum
0x15, 0x80, // Logical minimum (-128)
0x25, 0x7F, // Logical maximum (127)
0x75, 0x08, // Report size = 8 (bits)
0x95, 0x02, // Report count = 16 (bits)
0x81, 0x08, // Input (Data, Var, Abs)
0x19, 0x01, // Usage minimum
0x29, 0x08, // Usage maximum
0x91, 0x02, // Output (Data, Var, Abs)
0xc0 // End Collection

0x05, 0x01, // usage page=generic desktop
0x09, 0x02, // usage=mouse
0xA1, 0x01, // collection (application)
0x09, 0x01, // usage=pointer
0xA1, 0x00, // collection (physical)
0x05, 0x09, // usage page (buttons)
0x19, 0x01, // usage minimum (1)
0x29, 0x03, // usage maximum (3)
0x15, 0x00, // logical minimum (0)
0x25, 0x01, // logical maximum (1)
0x95, 0x03, // report count (3)
0x75, 0x01, // report size (1)
0x81, 0x02, // input (data, var, abs)
0x95, 0x01, // report count (1)
0x75, 0x05, // report size (5)
0x81, 0x01, // input (constant)
0x05, 0x01, // usage page (generic desktop)
0x09, 0x30, // usage (X)
0x09, 0x31, // usage (Y)
0x09, 0x38 // usage (wheel
0x15, 0x81, // logical minimum (-127)
0x25, 0x7F, // logical maximum (127)
0x75, 0x08, // report size (8)
0x95, 0x03, // report count (3)
0x81, 0x06, // input (data, var, abs)
0xC0, // end collection (physical)
0xC0 // end collection (application)

USB Exercise Book

 HID Report Descriptors are fairly complex, and can be used to specify devices such as
keyboards, mice, point-of-sale cash registers and vendor specific applications. This
topic is out of the scope of this tutorial, and there are several more in depth resources
that are available.

By using a Vendor Specific usage page,
the HID driver ignores received data
and expects the Vendor’s application to
know how to format the data. The input
and output data size is then set to two
bytes (report size=8bits, report count=2
reports).

This Report descriptor is much more
complicated. First it tells the HID Driver
that the first byte of data is a bit map of
buttons being pressed (bits 0-2 for the
buttons, bits 3-7 are not used). Then it
says the next three bytes are used for X,
Y and wheel position. Since the whole
report is of Usage (Mouse) the HID
driver passes the data to the operating
system to use as the mouse.

CCS, Inc.

10 HID MOUSE, CONTINUED

 Type in the following program for ex10.c

#include “CCSUSB.H”

#defi ne USB_EP1_TX_ENABLE USB_ENABLE_INTERRUPT
#defi ne USB_EP1_TX_SIZE 8

#include <pic18_usb.h>
#include <usb_desc_mouse.h>
#include <usb.c>

void main(void) {
 #defi ne MOUSE_SEQUENCE_STEPS 16
 const char mouse_seq[MOUSE_SEQUENCE_STEPS]=
 {0, 1, 3, 4, 4, 4, 3, 1, 0, -1, -3, -4, -4, -4, -3, -1};

 int8 out_data[4]={0,0,0,0};
 int8 x_seq=0; int8 y_seq=MOUSE_SEQUENCE_STEPS/4;
 int8 count=0;

 LED_ON(LED1);
 LED_OFF(LED2);
 LED_OFF(LED3);

 usb_init();

 while (TRUE) {
 if (usb_enumerated()) {
 out_data[1]=mouse_seq[x_seq];
 out_data[2]=mouse_seq[y_seq];

 if (usb_put_packet(1,out_data,4,USB_DTS_TOGGLE))
 count++;

 if (count > 10) {
 if (++x_seq>=MOUSE_SEQUENCE_STEPS) {x_seq=0;}
 if (++y_seq>=MOUSE_SEQUENCE_STEPS) {y_seq=0;}
 count=0;
 }

 delay_ms(10);
 }
 }
}

 Compile and run the program.

USB Exercise Book

 This example will cause the mouse cursor to move in a circle. When the USB Prototyping
board is connected to the PC for the fi rst time, the operating system should automatically
install the HID driver. See Appendix-A if installation problems occur.

N
O

T
E

S

 usb_desc_mouse.h is a descriptor fi le supplied by CCS that confi gures
the USB device as a USB HID Mouse. It is these descriptors that tells
the operating system how to deal with data that is transmitted by the
USB device.

 By changing the HID Descriptor, the whole application could easily
be changed to a USB HID Joystick. This would be done by changing
the Usage Page to Gamepad, and defi ning which bytes of the data
represent button press and which bytes of data represent X and Y.

 In all HID applications, send/receive as much data as specifi ed in
the HID report descriptor. In this example the input report size is
four bytes, so the mouse application must always send four bytes.
If the mouse application were to send any other amount of data on
endpoint 1 the PC would throw the data away. This is true of all HID
applications.

 If it is desired to specify several different protocols, for example one
protocol where the transmitted size is four bytes and another protocol
where the transmitted size is six bytes, you can use the HID report ID.
A HID report ID is the fi rst byte in the message that specifi es which
protocol is being used. For an example, see ex_usb_kbmouse2.
c which is in the examples directory of the CCS C Compiler. This
example creates a Mouse/Keyboard combo device using two HID
report IDs.

CCS, Inc.

11 BULK DEVICES

 Bulk devices, such as printers and scanners, send large amounts of data. The benefi t of
bulk transfers over other transfer methods is that bulk transfers can allocate the highest
amount of bandwidth.

 Unlike HID, there are no generic bulk device drivers that are installed with operating
systems. A generic bulk drivers written by a third party can be found or written on one’s
own. CCS has written and provided a bulk driver to use in the following example.

 This example sends a 512 byte message to the PC using bulk transfers. The 512 byte
message represents a sine wave, which we will view on the PC using CCS’S sample
bulk driver and sample PC application.

 Type in the following program, named ex11.c,

 Compile and run the program

#include “CCSUSB.H”

#defi ne USB_HID_DEVICE FALSE
#defi ne USB_EP1_TX_ENABLE USB_ENABLE_BULK
#defi ne USB_EP1_TX_SIZE 256
#defi ne USB_EP1_RX_ENABLE USB_ENABLE_BULK
#defi ne USB_EP1_RX_SIZE 8

#include <pic18_usb.h>
#include <usb_desc_scope.h>
#include <usb.c>

#defi ne OSCDEMO_MESSAGE_SIZE 512

#include <math.h>

int in_data[2], msg[OSCDEMO_MESSAGE_SIZE];
#defi ne threshold in_data[0]
#defi ne sample_rate in_data[1]

int read_simulated_adc(void) {
 #defi ne step (2*3.14/OSCDEMO_MESSAGE_SIZE)
 static fl oat f=0.0;
 int adc, i;

 adc=((sin(f)+1.0)/2.0)*0xFF;
 for (i=0;i<=sample_rate;i++)
 f=f+step;
 if (f>=6.28)
 f=f-6.28;
 return(adc);
}
(continued...)

USB Exercise Book

(continued...)

void main(void) {
 int16 i=0;
 int8 last_adc, adc, trigger=FALSE;

 LED_ON(LED1);
 LED_OFF(LED2);
 LED_OFF(LED3);

 usb_init();

 while (TRUE) {
 if (usb_enumerated()) {
 LED_ON(LED3);

 adc=read_simulated_adc();
 if ((adc>=threshold)&&(last_adc<threshold)) {trigger=TRUE;}
 if (trigger) {msg[i++]=adc;}
 if (i>=OSCDEMO_MESSAGE_SIZE) {
 usb_puts(1, msg, OSCDEMO_MESSAGE_SIZE, 15);
 trigger=FALSE;
 i=0;
 }
 last_adc=adc;

 if (usb_kbhit(1))
 usb_get_packet(1,in_data,2);
 }
 }
}

CCS, Inc.

11 BULK DEVICES, CONTINUED

 When this program is run for the fi rst time and connected to the PC, a Windows
dialog box should open and ask to install drivers. For this example CCS has provide
some sample bulk drivers. See Appendix-B for help on installing drivers in Win-
dows 2000/XP. See Appendix-C for help on installing drivers in Windows 98/ME.
When these drivers are installed and the device enumerates correctly, the device in
Windows Device Manager should appear.

USB Exercise Book

 After the driver is loaded, start OSCOPE.EXE provided with this tutorial. OSCOPE.
EXE should be located in C:\USBPIC (or the location where the USB.ZIP on the
floppy was extracted to). OSCOPE.EXE uses the CCS sample bulk driver to talk to
this example application, and displays the received 512 bytes like an oscilloscope.

 In OSCOPE.EXE, use File->Start to open communications with the microcontroller.
In the application there are two panes. The main pane, on the right, displays the
data the PIC is sending. The left pane is a trigger slider. Use the trigger slider to ad-
just the threshold at which the microcontroller starts sending data. At the bottom of
the application, choose between three sample rates to change the frequency of the
simulated sampling.

N
O

T
E

S

 The max packet size of this endpoint is 256 bytes. In order to send a
512 byte message, send two 256 byte packets. A final 0 length packet
is sent to indicate and end of message marker. See Section 9 of this
tutorial for examples of multi-packet messages.

 usb_puts() will send multi-packet messages for you. usb_puts() knows
how many packets to send for the message because the packet size
was defined with USB_EP1_TX_SIZE. If other endpoints were used it
would use that endpoint’s respective endpoint size definition.

 Windows knows to load the USBDemo.sys drivers for this demo
because the .INF file for this driver specifies the Vendor ID and Product
ID of the USB device the driver is valid for. The same Vendor ID and
Product ID in the .INF file is also in the device descriptor.

 A 256 byte packet is allowed in this example because of using bulk
transfers. The previous examples used HID, which required interrupt
transfers, and interrupt transfers can only have a max packet size of 64.

CCS, Inc.

12 VIRTUAL COM PORT

 To make USB as robust as possible, the USB organization has specifi ed many
standard classes and protocols from which to base a device. One standard class, HID,
which deals with simple human interface devices was reviewed in Chapters 9 & 10.
Another standard class is the Communication Device Class, or CDC, which deals with
communication devices such as POTS, Telephony and Ethernet adapters. One sub-
class of CDC is an Abstract Control Model Serial Emulation which will create a virtual
COM port on a PC, creating a simple USB to UART converter.

 Using this CDC class it is easy to adapt previous RS232 applications to USB because
upon enumeration the PC assigns a COM port to the USB device from which can be
written and read to like previous RS232 legacy devices. Another feature of the CDC
class is that CDC drivers are included in many operating systems, and a driver for a
specifi c application does not need to be written.

 CCS provides a library, that sits upon the already provided USB stack, to create a Virtual
COM port out of a USB device. The following example demonstrates this library.

 Type in the following program, named ex12.c.
 Compile and run the program.

#include “CCSUSB.H”

#include <usb_cdc.h>

void main(void) {
 char c;
 int8 delay=0;

 LED_ON(LED1);
 LED_OFF(LED2);
 LED_OFF(LED3);

 setup_adc(ADC_CLOCK_INTERNAL);
 setup_adc_ports(AN0);
 set_adc_channel(0);

 usb_init();

 while (TRUE) {
 if (usb_enumerated()) {
 LED_ON(LED3);

 if (usb_cdc_kbhit()) {
 c=usb_cdc_getc();
 if (c==’!’)
 output_toggle(LED2);
 }

 if (++delay>200) {
 delay=0;
 printf(usb_cdc_putc,”\r\nADC = %U”,read_adc());
 }

 delay_ms(5);
 }
 }
}

USB Exercise Book

 When the PC detects the device it will ask for a driver. CCS provides an .INF to use for
Windows NT / 2000 / XP, during the install process have the Add Device Wizard search
the C:\USBPIC\ directory (or where you un-zipped the USB.ZIP from Chapter 1 of this
tutorial). Since the actual drivers are part of the operating system only the .INF file is
needed, but it may need to copy driver files from the operating system install CD.
 Note: CCS does do not have an .INF file for Windows 98 / ME

 After successful enumeration (LED3 will be lit), open a serial terminal program (such as
Hyperterminal) and open the COM port of a USB device. You can find the COM port of a
USB device by inspecting the Device Manager.

 Every second the ADC value read on channel 0 will be sent to the COM port.
 From a serial terminal program, sending a ! character will toggle LED2.

N
O

T
E

S

 usb_cdc.h will include all the USB stack and descriptors required to
configure the USB device for CDC. It also provides all the handler
code for normal USB requests and CDC requests, which are
processed in the USB interrupt.

 When incoming serial characters are received by the USB stack, they
are stored into a RAM buffer. usb_cdc_kbhit() then returns TRUE if
there is data in the receive buffer, and usb_cdc_getc() returns the next
character in the receive buffer.

 usb_cdc_putc() will put data into a RAM buffer, and when the endpoint
buffer is ready to transmit the library will send the data.

 usb_cdc_kbhit(), usb_cdc_getc() and usb_cdc_putc() provide similar
functionality to kbhit(), getc() and putc(). Re-write any previous serial
I/O to use these functions to migrate from RS232 to USB.

 usb_cdc.h provides other features, such as ports of functions from
input.c, a method for getting DTE/DTR from terminal and getting
the baud rate as specified in your terminal program. Read the
documentation in usb_cdc.h for more information.

CCS, Inc.

If the above dialog box appears, Press Next.

 Note: These drivers should already be included in versions of Windows after Windows
98. For non-Windows 98 machines the install process should be similar but not exact to
these directions. Refer to your operating system documentation. USB does not work in
Windows 95.

 Step 1:
After connecting the USB device to the system, Windows should detect the HID device
and the install wizard should start:

Appendix A: Installing HID drivers in Windows 98

USB Exercise Book

Make sure USB Human Interface Device is highlighted, and press Next.

Select Display a list of all the drivers in a specific location, and press Next.

 Step 2:
The following dialog box should be displayed:

 Step 3:
The following dialog box appears:

CCS, Inc.

Press Next

 Step 4:
The following dialog box should be displayed:

 Step 5:
The following dialog box may appear:

Appendix A: Installing HID drivers in Windows 98 Continued

USB Exercise Book

 If the above dialog box was not present, then go to Step 6.

 If the above dialog box occurred , put in the Windows 98 CD into the CD-ROM
and press OK. If the PC cannot auto-detect the CD, another dialog box may open
stating it cannot find the file. Press the Browse button on this dialog box and find
the file specified on the CD, and press OK.

 Step 6:
If the installation was successful, the following dialog box will appear.

CCS, Inc.

If this dialog box does not pop up, go to Chapter 9 of this tutorial to program the USB
Prototyping board with a bulk USB device example.

Otherwise press Next.

Appendix B: Installing CCS Bulk drivers for Windows 2000/XP
 Step 1:

After plugging in the USB Prototyping board, the following dialog box will appear:

USB Exercise Book

Select “Search for suitable driver for my device” and press Next.

Select “Specify a location” and press Next.

 Step 2:

 Step 3:

CCS, Inc.

Press Next.

Type in C:\USBPIC in the text box (where C:\USBPIC is the location where the unzipped
example files from the Development Tools CD-ROM are saved. If saved to a different
location then put that location here).

After the proper directory is entered into the text field, press the Next button.

 Step 4:

 Step 5:

Appendix B: Installing CCS Bulk drivers for Windows 2000/XP, Continued

USB Exercise Book

Press Finish.

 Step 6:

CCS, Inc.

If this dialog box is not
shown, go to Chapter 9 in
this tutorial to program the
USB Prototyping board with
a bulk USB device example.

Otherwise, press Next.

Select “Search for the best
driver for your device.” and
press Next.

Select “Specify a location.”
Type in C:\USBPIC in the text box
(where C:\USBPIC is the location
where the unzipped example files.
If saved to a different location then
put that location here).
After the proper directory is entered
into the text field, press the Next
button.

Appendix C: Installing CCS Bulk drivers for Windows 98/ME
 Step 1:

Plug-in the USB Prototyping board, the following dialog box will occur:

 Step 2:

 Step 3:

USB Exercise Book

Press Next

Type in C:\USBPIC in the text box
(where C:\USBPIC is the location
where the unzipped example files are
saved. If saved to a different location
then put that location here).
After the proper directory is entered
into the text field, press the OK button.

Press Finish.

 Step 4:

 Step 5:

 Step 6:

CCS, Inc.

Further References
Official Website:
http://www.usb.org/
(Official documentation, discussion forum, certification tools and software)
Microchip’s USBApp Note Central:
http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1490&filterID=404
(Microchip has written several application notes about using USB with their processors.
Also includes example firmware.)
Jan Axelson’s USB Central:
http://www.lvr.com/usb.htm
(Frequently asked developer questions, software/firmware/driver development examples,
links)
Trace Systems HIDMaker:
http://www.tracesystemsinc.com/
(Useful software application that automatically generates HID applications, including the
PC software and the PIC firmware. Supports CCS compiler)
Thesycon USBIO:
http://www.thesycon.de/eng/usbio.shtml
(Sells very useful USB debugging/testing software and a development kit with a generic
USB driver. Demo downloads are available.)
Ellisys:
http://www.ellisys.com/
(Sell low cost hardware USB packet analyzers.)

On The Web
Comprehensive list of PIC® MCU
Development tools and information

www.mcuspace.com

Comprehensive list of PICmicro®
Development tools and information

www.pic-c.com/links

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small debug
program in the chip. This is a basic debug tool that takes up some of the chip’s resources (I/O
pins and memory). An emulator replaces the chip with a special connector that connects to a unit
that emulates the chip. The debugging works in a simulator manner except that the chip has all of
its normal resources, the debugger runs faster and there are more debug features. For example
an emulator typically will allow any number of breakpoints. Some of the emulators can break on
an external event like some signal on the target board changing. Some emulators can break on
an external event like some that were executed before a breakpoint was reached. Emulators cost
between $500 and $3000 depending on the chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand alone
device programmer may be used to program all the chips. These programmers will use the .HEX
file output from the compiler to do the programming. Many standard EEPROM programmers do
know how to program the Microchip parts. There are a large number of Microchip only device
programmers in the $100-$200 price range. Note that some chips can be programmed once
(OTP) and some parts need to be erased under a UV light before they can be re-programmed
(Windowed). CCS offers the Mach X which is a stand-alone programmer and can be used as an
in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources. Some
have an ICD interface and others simply have a socket for a chip that is externally programmed.
Some boards have some advanced functionality on the board to help design complex software.
For example, CCS has a Prototyping board with a full 56K modem on board and a TCP/IP stack
chip ready to run internet applications such as an e-mail sending program or a mini web server.
Another Prototyping board from CCS has a USB interface chip, making it easy to start developing
USB application programs.

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip. A
simulator offers all the normal debug capability such as single stepping and looking at variables,
however there is no interaction with real hardware. This works well if you want to test a math
function but not so good if you want to test an interface to another chip. With the availability of low
cost tools, such as the ICD in this kit, there is less interest in simulators. Microchip offers a free
simulator that can be downloaded from their web site. Some other vendors offer simulators as a
part of their development packages.

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
 · Specify operational settings at the execution level
 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface
 · Simply point, click and program
 · Additions to HEX file organization include associating comments or a graphic image
 to a file to better ensure proper file selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics
 · Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specific driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a file list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™
 · All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help file for additional assistance.

+
5

B
6

B
4

B
0

D
6

D
4

D
2

D
0

C
2

C
0

A
4

A
2

E2
E0

+
5

B
7

B
5

B
3

B
1

D
7

D
5

D
3

D
1

C
1

A
5

A
3

A
1

E1

P
IC

1
8

F4
5

5
0

P
o

t
A

0

R
S2

3
2

C
6

, C
7

LE
D

 B
5

IC
D

C
o

n
n

ec
to

r

P
u

sh
b

u
tt

o
n

A
4

U
SB

P
o

w
er

fr
o

m
U

SB

P
o

w
er

fr
o

m
W

al
lA

d
ap

te
r

R
es

et

LE
D

 B
4

LE
D

 A
5

P
o

w
er

9
V

 D
C

C
2

G

GG

