
Development Kit
For the PIC® MCU

Exercise Book

Robotics
March 2010

PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

Copyright © 2010 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.

CCS, Inc.

(1) ICS-S40 can also be used in place of ICD-U. Connect it to an available serial port on the PC using the
9 pin serial cable. There is no driver required for S40.

Inventory
 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must

have a spare 9-pin serial port, a USB port, a CD-ROM drive and 75MB of disk space.

 The diagram on the following page shows each component in the Robot Kit. Ensure
every item is present.

Software Setup
 Insert the CD into the CD-ROM drive and wait for the install program to start. If the

computer is not set up to auto-run CDs, click on the START button and select RUN.
Enter D:\SETUP1.EXE where D: is the drive letter for your CD-ROM drive.

 Click on Install and use the default settings for all subsequent prompts. Click NEXT,
OK, CONTINUE, etc. as required.

 Double click the compiler icon on the desktop. In the PCW IDE, click Help > About
and verify an IDE and PCM version number is shown; this ensures the software was
correctly installed. Exit the IDE.

Hardware Setup
 Connect the PC to the ICD(6) using the USB cable.(1) Connect the prototyping board

(10) to the ICD using the modular cable. The fi rst time the ICD-U is connected to
the PC Windows would detect new hardware. Install the USB driver from the CD or
website using the new hardware wizard. The driver needs to be installed properly
before the device can be used.

 The LED should be red(2) on the ICD-U to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the
desktop. Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LED should
be illuminated green. If any errors are detected, go to Diagnostic tab. If all tests
pass, the hardware is installed properly.

 Disconnect the hardware until the exercise in chapter four is reached. Always fl ip
the power switch to the off position (away from the speaker) before connecting and
disconnecting hardware.

1 UNPACKING AND INSTALLATION

(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

ROB
OTI

CS

Robotics

ICD-U64

Robotics Exercise Book

 1 Carrying case
 2 Exercise Booklet
 3 CD-ROM of Compiler Software (optional)
 4 Serial PC to controller board Cable (RS-232)
 5 Modular Cable (ICD to controller board)
 6 ICD unit allows programming and debugging

PIC® MCU parts from a PC
 7 Robot Assembly Kit (see Chapter 2 for detailed parts list)

with Robot Controller
 8 Serial (or USB) PC to ICD Cable
 9 Infrared Remote Control
 10 Battery Snap

Parts list
 Ensure each of the following items is present.

*Note: See Appendix A for extra Robot Assembly Instructions

Quantity Part Description
8 #4-40 .375" Phillips pan head sheet metal screw (pointed tip)
4 #6-32 .500" Phillips pan head machine screw (fl at tip)
5 #4-40 .375" Phillips pan head machine screw (fl at tip)
5 #4-40 Hex nut
4 #6-32 Hex nut
2 #4 Internal tooth lock washer
4 #4 Nylon washer
4 1.375” Standoff
1 Chassis body
1 Chassis scoop
1 9V Battery snap
1 4 AA Battery holder
2 2” Velcro hook strip
2 2” Velcro loop strip
2 Servo
2 Wheel
2 Rubber bands
3 Line sensor (QRB1134)
2 Proximity sensor (Sharp GP2D12)
2 Proximity sensor cable
1 Controller board
2 Extra Servo hardware

ROBOT ASSEMBLY2

CCS, Inc.

Step 1: Attaching the Line Sensors
Parts used

Quantity Part Description
3 #4-40 .375” Phillips pan head machine screw (flat tip)
3 #4-40 Hex nut
3 Line sensor (QRB1134)
1 Chassis scoop

Assembly
Place a line sensor on the broad surface of the scoop with the flange pointing downward.
Point the sensor away from the flange and attach it with a #4-40 .375” flat tip screw and
#4-40 hex nut. The nut should be placed on the sensor side of the scoop. See Figure 1.

Step 2: Attaching the Proximity Sensors and Scoop
Parts used

Quantity Part Description
2 #4-40 .375” Phillips pan head machine screw (flat tip)
2 #4-40 Hex nut
2 #4 Internal tooth lock washer
2 Proximity sensor (Sharp GP2D12)
1 Chassis body

Figure 1

Robotics Exercise Book

Figure 2

Figure 3

CCS, Inc.

Assembly
Route the wires for the center line sensor through the notch in the chassis body. Position the
scoop against the small fl ange on the chassis body and orient so the broad portion points
opposite of the fl anges on the chassis body. Place a proximity sensor on the front side of the
scoop with the white receptacle toward the center. Thread a #4-40 .375” fl at tip screw through
the proximity sensor, chassis scoop and chassis body. Fasten using a #4 internal tooth lock
washer and #4-40 hex nut. Repeat for the second proximity sensor. See Figure 2.

Step 3: Attaching the Standoffs
Parts used

Quantity Part Description
2 #4-40 .375” Phillips pan head sheet metal screw (pointed tip)
2 1.375” Standoff

Assembly
Place the chassis body so the two fl anges are pointing upwards. Examine one of the
standoffs. Notice the hole through the side is closer to one end. This end will be attached
to the chassis body. Orient the hole so it is not facing
the fl anges on the chassis body. Use four #4-40 .375”
pointed tip sheet metal screws to attach the standoffs
to the chassis body. See Figure 3.

Assembly

ROBOT ASSEMBLY (CONT.)2

Figure 4 Figure 5

Robotics Exercise Book

Step 4: Modifying the Servos
Servos are constructed to have a limited range of movement because they are designed
to be used for ailerons, rudders, or steering. They must be modified for continuous rota-
tion before attaching them to the robot.
First, remove and set aside the black screw and white wheel. Next, remove the four
screws holding the case together. Carefully open the case by pressing on the drive gear
and pulling up on the case. Take out the white potentiometer drive plate (see Figure 4)
located on the underside of the drive gear (with bearing on top).
The plate and wheel will not be used in these exercise procedures; however, they may
be useful in other applications. Cut the tab from the top of the drive gear until it is flush
with the surface. One easy way to do this is to use a side cuttter, as shown in Figure 5.

Step 5: Attaching the Servos
Parts used

Quantity Part Description
4 #6-32 .500” Phillips pan head machine screw (flat tip)
4 #6-32 Hex nut
2 Servo

Assembly
Position the servos between the standoffs with the drive gear closer to the larger flange
on the chassis body. Use the #6-32 .500” flat tip screws and #6-32 hex nuts to secure
the servos to the standoffs. Point the screws toward the center of the robot. Do not pinch
the wires for the center line sensor between the servos.

CCS, Inc.

Step 6: Attaching the Batteries
Parts used

Quantity Part Description
1 9V Battery snap
1 4 AA Battery holder
1 9V Battery (not included)
4 AA Battery (not included)
2 2” Velcro hook strip
2 2” Velcro loop strip

Assembly
Apply the two Velcro loop strips to the bottom of the chassis and the two Velcro hook strips
to the 4 AA battery holder. Insert four AA batteries into the battery holder and attach it to the
chassis body.

Attach the 9V battery snap to the 9V battery. Place the battery between the large fl ange on
the chassis body and the rear standoffs.

CCS recommends using Nickel-Metal-Hydride, or NiMH, rechargeable batteries.
For more information on battery types, please visit this website:
http://www.junun.org/MarkIII/Manual/Appendix.jsp

Step 6: Attaching the Batteries

ROBOT ASSEMBLY (CONT.)2

Robotics Exercise Book

Step 7: Attaching the Controller Board
Parts used

Quantity Part Description
4 #4-40 .375” Phillips pan head sheet metal screw (pointed tip)
4 #4 Nylon washer
1 Controller board
2 Proximity sensor cable

Assembly
Set the controller board on top of the standoffs with the speaker facing the rear of the
robot. Thread four #4-40 .375” pointed tip screws through the #4 nylon washers then
fasten the controller board to the standoffs. Do not over tighten.

Refer to the diagram on the inside front cover to aid in the following cable connections:
Plug the left, right, and center line sensors into their respective four pin receptacles.
Plug the left and right proximity sensors into their corresponding three pin receptacles
near the center of the controller board.

Route the Servo wires under the controller board and out the front of the robot. Plug the
connector into the 3-pin header located on the same side as the Servo. The orange wire
should be toward the speaker side of the robot.

Flip the switch away from the speaker into the OFF position. The four AA battery pack is
attached to the 4-pin header near the speaker. Plug the wires into the two posts closest
to the speaker with the brown ground wire on the middle post. Plug the 9V battery snap
onto the other two posts with the brown ground wire on the middle post.

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All.

 Click File>Open>Source File. Select the fi le: c:\Program Files\PICC\Examples\Ex_
stwt.c.

 Scroll down to the bottom of this fi le. Notice the editor displays comments,
preprocessor directives and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a help fi le
description for set_timer0 appears. The cursor may be placed on any keyword or
built-in function and F1 will fi nd help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various
standard cut, paste and copy functions.

 Review the editor's option settings by clicking on Options/Editor Properties. The
IDE allows selection of the tab size, editor colors, font and many more. Click on
Options/Customize to select which icons appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different

compilers for each family of Microchip parts. All the exercise in this booklet are for
the PIC16F877A chip, a 14-bit opcode part. Make sure PCM 14 bit is selected in the
drop-down box under the Compiler tab.

 The current fi le is always shown in the bottom of the IDE. If the desired fi le to com-
pile is not shown, click on the tab of that particular fi le. Right click on the editor and
select Make fi le project.

 Click Options>Project Options>IncludeFiles and review the list of directories the
compiler uses to search for included fi les. The install program should have put two
directories in this list: devices and drivers.

 Normally, the fi le formats need not be changed and global defi nes are not used in
these exercises. To review these settings, click Options>Project Options>Output
Files and Options>Project Options>Global Defi nes.

 Click Compile>Compile or the compile icon to compile. Notice the compilation box
shows the fi les created and the amount of ROM and RAM used by this program.
Press any key to remove the compilation box.

3 USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT

CCS, Inc.

Click here for the file menu. Files and Projects are created,
opened, or closed using this menu.

Place cursor here for slide out boxes.
All of the current project’s source and
output files can be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using
this menu.

Compiles current selected unit, does NOT link/build
into a HEX file.

Quick view of supported devices.

Compiles all units that have changed since last build,
links/builds into a HEX file.

Compiles all units regardless if they have changed since
last build, links/builds into a HEX file.

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the microcontroller

is used. Identifiers that start with @ are compiler generated variables. Notice some
locations are used by more than one item. This is because those variables are not active
at the same time.

 Click Copile>C/ASM list. This file shows the original C code and the assembly code
generated for the C. Scroll down to the line:

 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal. The
second instruction moves W into memory. Switch to the Symbol Map to find the memory
location is where int_count is located.

 Click View>Data Sheet, then View. This brings up the Microchip data sheet for the
microcontroller being used in the current project.

Robotics Exercise Book

#include <16F877A.h>
#fuses HS,NOLVP,NOWDT,NOPROTECT,NOBROWNOUT,PUT
#use delay(clock=10000000)

#include <wts701.c>

void main() {
 char text[] = “Hello world”;
 tts_init();

 while(TRUE) {
 tts_sendText(text);
 delay_ms(5000);
 }
}

N
O

T
E

S

 The fi rst three lines of the source code defi ne the hardware
environment. The microcontroller being used is the PIC16F877A
running at 10MHz. Click on View > Valid Fuses to read about the
different fuse settings. Fuses control the microcontroller’s confi guration
word.

 The line #include <wts701.c> includes the drivers for using the text to
speech converter. This chip is described in detail in Chapter 11.

 The statement while(TRUE) is a simple way to create a loop that
never stops. Infi nite loops are very common in main for embedded
systems.

 The statement delay_ms(5000); is a fi ve second delay (5000 ms).

CCS, Inc.

 Open the PCW IDE. If there are any open fi les, click File > Close All.

 Click File > New > Source File and enter the fi lename ex4.c.

 Enter the following source code then compile.

4 PROGRAMMING

ICD-U64

Robotics Exercise Book

 Connect the ICD to the Prototyping board using the modular cable, and connect the ICD
to the PC. Power up the Prototyping board.

 Click on Tools > ICD to download the program to the controller board. Once completed,
the robot should say “Hello World” every five seconds. Power down the robot.

 Highlight the first three lines of source code then click Edit > Paste to file. Name the file
robot.h. This header file is used in the remaining example programs.

#include “robot.h”

int8 sum(int8 a, int8 b) {
 return a+b;
}

void main() {
 int8 x = 2, y = 3;

 while(TRUE) {
 x = sum(x, y);
 }
}

CCS, Inc.

 Open robot.h and insert #device ICD=TRUE on the line after #include
<16F877A.h> to compile in debug mode.

 Create a fi le called ex5.c, type in the following source code. Right click in the editor and
select Make fi le project, then compile.

5 DEBUGGING

 Start the debugger by clicking Debug > Enable Debugger. After the program is loaded
onto the controller board, click the step over icon until the yellow arrow passes x =
sum(x, y). Each click causes a line of code to be executed. The line with the arrow is
next to the executed but has not done so. Clicking the step over icon on x = sum(x,
y) caused the entire function to be executed in one click. The debugger stepped over the
function.

 Now click the single step icon twice. The arrow should point at return a+b. The single
step icon caused the debugger to step into the function. Press single step icon a
few more times to return to main.

 Click the Watches tab, then the plus icon to add a watch. Enter x or choose x from
the list of variables and click Add Watch. The current value of x is shown. Continue to
press the step over and single step icons to watch the value of x change. Notice
how the value of x is not displayed when inside the sum() function because it is not
available in the source code at this time.

 Click the icon to allow the program to run normally. Click the stop icon to halt
execution. The debugger arrow will point to where the program was halted.

Robotics Exercise Book

 In the editor, click on return a+b to move the cursor to that line. Click the Breaks tab and
click the plus icon to set a breakpoint. The program will be halted every time this line
of code is reached. Click the icon. The debugger will stop at the breakpoint. Practice
setting breakpoints at different locations to learn how they work.

 Click Compile > C/ASM List. Find the line with the debugger arrow. Notice one
assembly instruction was already executed and the arrow has passed the breakpoint.
This is a side effect of the debugger. Sometimes breakpoints slip by one ASM instruction.

 Click the step over and single step icons a few times. Notice that the debugger is
stepping through one assembly instruction per click instead of one entire C line.

 Change return a+b to return a-b and recompile. Step over the call to sum and examine
the value of x. The int data type by default is not signed, so x cannot be the expected –1.
The modular arithmetic works like a car odometer in reverse, only in binary. For example,
00000001 minus 1 is 00000000; subtract another 1 to get 11111111, or decimal 255.

 Press the reset icon and step up to x = sum(x, y). Click the Eval tab. This pane allows a
one-time expression evaluation. Type in x+y and click Eval for the debugger to calculate
the result. The complete expression may also be put in the watches pane as well. Now
enter y=1 and click Eval. This expression will change the value of y if the “Keep side
effects” checkbox is checked. Check this box and click Eval again. Click the Watches tab
then step over the call to sum to verify the value of x was calculated with new y value.

 Set a break point at x = sum(x, y) then click the Break Log tab. Check the Log checkbox,
make sure break 1 is selected, and enter x in the edit box. Press the icon. Each time
the breakpoint is reached, the debugger will retrieve the value of x, add it to the log, and
continue execution.

 Remove #device ICD=TRUE from robot.h before continuing onto the remaining
exercises.

#include “robot.h”

#defi ne CALIBRATE_SERVOS
#include <servos.c>

void main() {
 init_servos();
 for(;;); // Loop forever
}

CCS, Inc.

 The robot is equipped with two Servos that individually drive the left and right wheels.
This allows for very tight turns and a variety of speeds. The Servos are controlled by
sending a high pulse every 20ms. The length of the pulse tells the Servo how fast it
should move in a particular direction. Pulses range from 0.9ms to 2.1ms with 1.5ms as
center. The Servos are calibrated with the center as stop. They can be spun in either
direction by adjusting the pulse width to either side of center. The Servos must be
calibrated before they are used.

 Create calibrate_servos.c and enter in the following source code:

6 BASIC MOVEMENT

 Compile the program and download it to the controller board by clicking Tools > ICD.
Once the program is running, the Servos should start to spin. Using your fi ngers, turn
the potentiometer until the motors stop spinning. Reassemble the Servos.

 Attach the wheels by aligning them with the teeth on the drive gear and pressing them
on. Use the small black screws from the Servo parts to secure the wheels to the Servos.
The robot is now able to move under its own power.

 Create a new fi le called ex6.c and type in the following source code to control the robot’s
movement:

#include “robot.h”
#include <servos.c>

void main() {
 init_servos(); // Initialize servo control
 delay_ms(3000); // Wait 3 seconds before moving

 for(;;) {
 set_servo(LEFT, FORWARD, 4); // Go forward at maximum speed
 set_servo(RIGHT, FORWARD, 4);
 delay_ms(3000);

 set_servo(LEFT, BACKWARD, 4); // Spin in a tight circl
 delay_ms(2000);

 set_servo(LEFT, FORWARD, 0); // Stop for 1 second
 set_servo(RIGHT, FORWARD, 0);
 delay_ms(1000);

 set_servo(LEFT, BACKWARD, 1); // Go backward at a slow speed
 set_servo(RIGHT, BACKWARD, 1);
 delay_ms(5000);

 set_servo(LEFT, FORWARD, 1); // Turn in a large circle
 set_servo(RIGHT, FORWARD, 3);
 delay_ms(4000);

 }

}

Robotics Exercise Book

 Compile the program then download to the controller board by clicking Tools > ICD. Once the
program is fi nished downloading, turn off the robot. Unplug the ICD cable from the controller
board and set the robot on the fl oor in an open area. Turn the robot back on and watch it move.

 Servos.c contains the functions needed to setup and control the Servos. Right click
on servos.c and click Open “servos.c”. Scroll down to init_servos(). The init_servos()
function performs the necessary setup. It starts by confi guring how timer one
increments then sets CCP1 and CCP2 to trigger an interrupt when their respective
registers match timer one. The left and right adjustments are set to zero to halt the
Servos; interrupts are then enabled.

 The next function, set_servo(), is used to control the Servo speeds. It selects an adjustment
from the servo_speeds look up table. The interrupt service routines use this adjustment
as an offset from the center pulse width to spin a Servo in either direction.

 Experiment controlling the robot’s movement by creating a new series of movement
instructions in EX6.C.

#include “robot.h”
#include <servos.c>

void main() {
 init_servos(); // Initialize servo control

 printf(“\n\r(F)orward, (B)ackward, (L)eft, (R)ight, (S)top\n\r”);

 for(;;) {
 switch(toupper(getc())) {
 case ‘F’: // Move the robot forward
 set_servo(LEFT, FORWARD, 4);
 set_servo(RIGHT, FORWARD, 4);
 break;
 case ‘B’: // Move the robot backward
 set_servo(LEFT, BACKWARD, 4);
 set_servo(RIGHT, BACKWARD, 4);
 break;
 case ‘L’: // Turn the robot left
 set_servo(LEFT, BACKWARD, 4);
 set_servo(RIGHT, FORWARD, 4);
 break;
(continued...)

CCS, Inc.

 RS-232 is a popular communication protocol used on most PCs and many
embedded systems. Two signal wires transmit and receive data while a third wire is
used for ground. The PIC16F877A has built in hardware to buffer serial data when
using pin C6 for transmitting and C7 for receiving. The compiler is able to use any
pins, but will take advantage of the built in hardware when using C6 and C7.

 Add the following line of code at the end of robot.h to enable RS-232
communication:
 #use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

 The #use rs232 directive enables the following functions:
 • void putc (char c); • void printf (char* s);
• char getc(); • int1 kbit();

 Use putc() and getc() to send and receive a single character over the RS-232
connection, respectively. The use of printf() calls putc() multiple times to send
multiple characters. Use kbhit() to test if a character is sitting in the receive buffer.
Read more about these functions and their derivatives in the help or reference
manual included with the compiler.

 Create a new source fi le called ex7.c and type in the following source code:

7 RS-232 CONTROL

(continued...)
 case ‘R’: // Turn the robot right
 set_servo(LEFT, FORWARD, 4);
 set_servo(RIGHT, BACKWARD, 4);
 break;
 case ‘S’: // Stop
 set_servo(LEFT, FORWARD, 0);
 set_servo(RIGHT, FORWARD, 0);
 break;
 }
 }
}

Robotics Exercise Book

 Compile the program and load it to the controller board. Disconnect the robot from the
ICD. Connect the robot to the PC with the 9-pin serial cable. Click Tools > Serial Port
Monitor within the PCW IDE. Confi gure the COMM port by clicking Confi guration >
Set port options. Set the baud rate to 9600, parity to none, data bits to 8, stop bits to 1,
and fl ow control to none. Make sure the correct COMM port is selected. Set the robot in
an open area on the fl oor. The keyboard and serial cable now act as a tethered remote
control. Practice controlling the robot by pressing keys that correspond to a direction.

 RS-232 sends a series of bits at the
hardware level. The baud= option
specifi es how many bits are sent per
second. The bit stream as specifi ed
above is a start bit (always 0), 8 data
bits (lsb fi rst) and a stop bit (always
1). The data line then remains at the
logic 1 level. The number of
bits may be changed with
a bits= option. A 0 is represented
as a positive voltage (+3V to +12V)
and a 1 is represented as a negative
voltage (-3V to –12V). Since the PIC16F877A outputs only 0V and 5V, a level converter
is required to interface to standard RS-232 devices such as a PC. A popular converter
chip is the MAX232. See the schematic in the back cover for details. The diagram above
shows a single character ‘A’ (01000001) sent at 9600 baud. The top waveform is from
the PIC16F877A, the bottom waveform is from the MAX232, and the 8 data bits are
between the dotted lines. Each bit is 104us.

 See input.c in the Drivers directory and ex_fl oat.c, ex_exsio.c and ex_sisr.c in the
examples directory for further information on using RS-232.

#include “robot.h”
#include <servos.c>
#include <stdlib.h>
#include <input.c>

struct {
 struct servo {
 int8 speed, dir;
 } l, r;
 int8 time;
} cfgs[10];

void main() {
 init_servos();

 for(;;) {
 int8 i, j, time;

 for(i=0;i<10; ++i)
 {
 do {
 printf(“\n\n\rLeft speed: “);
 cfgs[i].l.speed = get_int();
 } while (cfgs[i].l.speed > 4);

 do {
 printf(“\n\rLeft directions (F, B): “);
 cfgs[i].l.dir=getc();
 } while((cfgs[i].l.dir != ‘F’) && (cfgs[i].l.dir != ‘B’));

 if(cfgs[i].l.dir == ‘F’)
 cfgs[i].l.dir = 0;

 do {
 printf(“\n\rRight speed: “);
 cfgs[i].r.speed = get_int();
 } while (cfgs[i].r.speed > 4);

 do {
 printf(“\n\rRight direction (F, B): “);
 cfgs[i].r.dir = getc();
 } while((cfgs[i].r.dir != ‘F’) && (cfgs[i].r.dir != ‘B’));

(continued...)

CCS, Inc.

 Create fi le called ex8.c and type in the following source code:

8 ADVANCED MOVEMENT

if(cfgs[i].r.dir == ‘F’)
 cfgs[i].r.dir = 0;

 printf(“\n\rTime in s: “);
 time = get_int();
 }

 for(i=0; i<10; ++i)
 {
 set_servo(LEFT, cfgs[i].l.dir, cfgs[i].l.speed);
 set_servo(RIGHT, cfgs[i].r.dir, cfgs[i].r.speed);

 for(j=0; j < time; ++j) {
 delay_ms(1000);
 }
 }
 stop_servos();
 }
}

(...continued)

Robotics Exercise Book

 Compile the program and download it to the controller board.

 The program stores 10 different Servo confi gurations. Each confi guration controls the
speed, direction and diration of a turn. Once all 10 settings are completed, they are
played back.

 This example makes use of structures (structs). A struct is a way to group a common
data set. For instance, the struct Servo contains all the information needed to control a
Servo. Data inside a struct is allocated contiguously in RAM.

#include “robot.h”
#include <GP2D12.c>
#include <servos.c>

void main() {
 init_servos();
 init_objectSensors();

 for(;;) {
 int8 leftSensor, rightSensor;

 read_ObjectSensors(leftSensor, rightSensor);

 if(leftSensor > 100 || rightSensor > 100) {
 set_servo(LEFT, FORWARD, 0);
 set_servo(RIGHT, FORWARD, 0);
 } else if(leftSensor < 80 && rightSensor < 80) {
 set_servo(LEFT, FORWARD, 4);
 set_servo(RIGHT, FORWARD, 4);
 }
 }
}

CCS, Inc.

 An important attribute of a moving robot is being able to detect if an obstacle is in
its path. Avoiding objects can prevent damage to the robot or the obstruction. For
example, delivering robots in hospitals use similar sensors to avoid bumping into
people. The sensors included in the kit are able to detect objects from 5cm to 28cm
away. They contain an infrared (IR) LED and an IR collector. The LED is repeatedly
pulsed to emit a signal. The collector circuit detects the IR signal when refl ected off
of objects. The received signal quality is translated into an analog voltage. Using the
analog to digital converter (ADC), the robot can detect an obstacle and measure its
distance away.

 Create ex9.c and type in the following source code:

9 PROXIMITY SENSING

Robotics Exercise Book

 Compile the program and download it to the controller board. Set the robot on the floor
and point it toward a nearby obstacle. When the robot becomes close enough, it will
sense the increased voltage from the sensors and stop. The sensors function best when
used with white reflective objects rather than dark non-reflective objects.

 In the source code, the Servo speeds are not altered in the region between 80 and 100.
This creates a buffer zone in front of the robot to prevent the motors from twitching as
the ADC reading fluctuates above and below 100.

 Right click on GP2D12.c and select Open. Scroll down to init_objectSensors(). This
function configures the ADC to use the internal clock and sets which analog capable pins
are analog. The ADC on the PIC16F877A is capable of both 8 and 10 bit conversions.
The ADC resolution can be configured by inserting #device ADC=8 or ADC=10 on its
own line after #include <16F877A.h> in robot.h.

#include “robot.h”
#include <line_tracker.c>
#include <servos.c>

void main() {
 init_servos();
 init_lineTracker();

 for(;;) {
 int1 l, r;

 // Check if sensors are over black or white
 l = lt_check(LT_LEFT);
 r = lt_check(LT_RIGHT);

 // Check if it should turn right, left, or go straight
 if(l && !r) {
 set_servo(LEFT, FORWARD, 0);
 set_servo(RIGHT, FORWARD, 3);
 } else if(r && !l) {
 set_servo(RIGHT, FORWARD, 0);
 set_servo(LEFT, FORWARD, 3);
 } else {
 set_servo(RIGHT, FORWARD, 3);
 set_servo(LEFT, FORWARD, 3);
 }
 }
}

CCS, Inc.

 The line sensors on the bottom front of the robot can be used for a variety of purposes.
They can be used to follow lines, detect boundaries, or even read a change in refl ection
to navigate a robot soccer fi eld. These sensors are similar to the proximity sensors.
Each one contains an infrared LED and a phototransistor, but no oscillating circuit.
The phototransistor reacts to IR emissions from the LED only when a refl ective object
is placed very close to the sensor. It reacts by adjusting the current fl ow through
the sensor. Since the microcontroller cannot measure current, the output voltage is
connected to ground through a resistor; this creates a collector amplifi er. The voltage
level is measured by the analog to digital converter (ADC).

 Create a fi le called ex10.c and type in the following source code:

10 LINE FOLLOWING

Robotics Exercise Book

 Compile the program and download it to the controller board. Create a circular course for
the robot to follow by making a black line on a light colored surface. A great way to make
the line is to use black electrical tape. After creating the course, set the robot over the
line and turn it on. As it encounters a corner, it will stop one motor to turn and follow the
line. This is a very simple example that does not use the center sensor; therefore, the
robot may have troubles on tight corners.

 As an exercise, create a new program that uses the center sensor to make smarter
turns. For example, turn left quickly when the center and left sensor are both over the
line and slowly when only the left sensor is over the line.

 RS-232 printf statements can be a good tool to help debug a program. It does, however,
require an extra hardware setup to use. If the ICD is being used as a debug tool, the
compiler can direct putc() and getc() through the debugger interface to the debugger
screen. Add the following line to ex7.c:

 #use rs232 (DEBUGGER)

 Compile and load the program into the Prototyping board.
 Click GO, then click the Monitor tab.
 A prompt should appear. Enter some data to confi rm that the program is working.
 Stop and reset the program.
 Click the debugger Break Log tab, check the LOG box, set the breakpoint as 1 and

expression as L. Result is the value of the number being converted.
 Click GO, then click.
 The Log tab and notice that each time the breakpoint was hit the value of the L variable

was logged. In this case the breakpoint did not cause a full stop of the program, it just
logged the value of the requested expression and kept on going.

 Stop the program.
 Uncheck the LOG box under the log tab.
 Enter watches for L and r.
 Click GO.
 When the break is reached click on the snapshot icon:
 Check Time and Watches, uncheck everything else.
 If a printer is connected to the PC select Printer, otherwise select Unique fi le.
 Click on the Now button.
 Notice the requested data (time and watches) are either printed or written to a fi le as

requested.
 Click on the snapshot icon again and this time select Append to fi le, put in a fi lename of

EX11.TXT and check After each single step.
 Check Last C line executed in addition to the Time and Watch selected already and

close the snapshot window.
 Reset and then Step Over for a while.
 Use File>Open>Any File to fi nd the fi le EX11.TXT (by default in the Debugger Profi les

directory) after setting the fi le type to all fi les.
 Notice the log of what happened with each step over command.
 Uncheck the After each single step in the snapshot window.

CCS, Inc.

11 ADVANCED DEBUGGING

The debugger Eval tab can be used to evaluate a C expression. This
includes assignments. Set a break before the switch statement and use the
Eval window to change the operator being used. For example, type a + but
change it to a - before the switch.
Set a break on the switch statement and when reached, change to the
C/ASM view and single step through the switch statement. Look up the
instructions executed in the PIC18F4520 data sheet to see how the switch
statement is implemented. This implementation is dependent on the case
items being close to each other. Change * to ~ and then see how the
implementation changes.

A

B

FURTHER STUDY

 When the break is reached click on the Peripherals tab and select Timer 0.
 Shown will be the registers associated with timer 0. Although this program does not use

timer 0 the timer is always running so there is a value in the TMR0 register. Write this
value down.

 Clear the breakpoints and set a new breakpoint.
 Click GO.
 Check the TMR0 register again. If the new value is higher than the previous value then

subtract the previous value from the current value. Otherwise, add 256 to the current
value and then subtract the previous value (because the timer flipped over).

 The number we now have is the number of clock ticks it took to execute the switch and
addition. A clock tick by default is 0.2ms. Multiply your number of ticks by 0.2 to find the
time in ms. Note that the timers (and all peripherals) are frozen as soon as the program
stops running.

Robotics Exercise Book

CCS, Inc.

#include “robot.h”
#include <wts701.c>
#include <stdlib.h>
#include <input.c>

void main() {
 char key = 0;
 char text[50];
 text[0] = ‘\0’;

 tts_init(); // Initialize the text to speech chip

 for(;;) {
 switch(key) {
 case ‘E’:
 printf(“Text: “);
 get_string(text, sizeof(text)); // Enter text to speak
 case ‘R’:
 tts_sendText(text); // Repeat the text
 break;
 case ‘P’:
 printf(“Set pitch (0-6): “);
 tts_setPitch(get_int()); // Set the pitch
 break;
 case ‘S’:
 printf(“Set speed (0-4): “);
 tts_setSpeed(get_int()); // Set the speed
 break;

(continued...)

 One way for a robot to interact with the people around it is to emit sounds ranging
from simple beeps to understandable speech. The robot is equipped with a text to
speech converter and a speaker.

 Create a new fi le called ex11.c and type in the following code:

12 SPEECH

Robotics Exercise Book

(continued...)

 case ‘V’:
 printf(“Set volume (0-7): “);
 tts_setVolume(get_int()); // Set the volume
 break;
 default:
 printf(“(E)nter text, (R)epeat, (P)itch, (S)peed,
 (V)olume”);
 break;
 }
 printf(“\n\r”);
 key = toupper(getc());
 }
}

 Connect the RS-232 port to the PC and open the serial port monitor. Compile the
program then load it into the controller board. Press ‘E’ and enter some text. The text
is sent to the text to speech converter using an SPI protocol.

 The Winbond text-to-speech converter offers an extensive set of commands. Speech
playback can be paused, resumed or stopped and the volume, pitch, or speed can
be altered to change the sound.

 Text is converted in a few different ways. Most words are spoken exactly as they
are entered, but the chip also responds to abbreviations. For example, “Mar” is
pronounced as “March” and “MN” as “Minnesota.” Numbers like “23” are spoken
as “twenty-three”, but larger numbers like “94087” are spoken as “nine four zero
eight seven.” There is a limited amount of space for users to program their own
abbreviations. Once an abbreviation has been written, it cannot be erased without
reprogramming the entire chip. However, they can be deactivated. Read through
the WTS701 user’s manual at http://www.winbond-usa.com/ for an extensive list of
abbreviations and in text control commands.

 Open the driver, wts701.c, and review the functions described in the comments at
the top of the fi le. Experiment with some of the functions to change the playback and
speech sound.

CCS, Inc.

#include “robot.h”
#include <compass.c>

void main() {
 output_high(PIN_C0); // Disable the select line for the text to
 // speech chip to prevent interference
 compass_init();
 compass_calibrate();

 for(;;) {
 printf(“Angle: %lu\n\r”, compass_getAngle());
 delay_ms(500);
 }
}

 The robot is also equipped with an electronic compass. Similar to the line tracking
sensors, the compass offers a way to guide the moving robot. However, the compass
avoids the limitations of the line by allowing the robot to move freely and still know where
it is heading.

 The electronic compass on the robot is composed of an integrated circuit (IC), two
SEN-L inductors and two resistors. The IC measures the amount of time it takes to send
a series of pulses through an inductor/resistor circuit. The signal is generated in both
directions to achieve a zero centered magnetic fi eld measurement. Once calibrated,
taking the arctangent of this measurement on two different axes creates a compass.

 Calibration is a critical step before using the compass. Local magnetic interference,
such as the speaker magnet or moving Servos, renders the compass useless without
calibration. The compass is calibrated by taking a reading for north and a reading for
south, then averaging the component vectors. Another step to fi ne-tune the calibration
is to enter the number of degrees of declination for your area. This information can be
found at http://www.ngdc.noaa.gov/seg/geomag/jsp/Declination.jsp Declination is the
number of degrees between magnetic north and true north.

 Create ex12.c and type in the following source code:

13 COMPASS

Robotics Exercise Book

 Connect the ICD and RS-232 cable to the robot and run the serial port monitor. Compile
the program and download it to the controller board. Follow the instructions to calibrate
the compass. If you do not wish to use degrees of declination in your calibration, simply
enter 0 when prompted. For the best results, perform the calibration on a flat surface
with the robot a few feet away from the computer monitor. The monitor emits a changing
magnetic field, which will distort the calibration values. After calibrating, the current
heading is displayed in degrees; North is 0, East is 270, South is 180, and West is 90
degrees.

 Open compass.c and scroll down to end of compass_calibrate(). This function makes
use of the internal EEPROM on the PIC16F877A. EEPROM is memory that retains
its information when disconnected from power. However, data can be written a limited
number of times. The EEPROM on the PIC16F877A allows roughly 1 million writes
per address. Once the calibration values are calculated, they are stored in EEPROM.
The function compass_init() reads these values upon startup, so they only have to be
calculated once.

 Comment out the compass_calibrate() and recompile. Open ICD.exe located in the
installation directory. Click on Advanced…. Under Erase Modes, select Erase when
needed. Press OK and exit the ICD software. Now when a program is downloaded to
the controller board, only a memory area that needs to be programmed will be erased.
For this example, the flash area will be erased and the data EEPROM will remain intact.
This is how the calibration values are saved when downloading new firmware. Download
the new program by clicking Tools > ICD. It should behave exactly the same as before.

CCS, Inc.

Figure 6

 Included in the robot kit is a TV/VCR remote control. When a button is pressed, it
emits a signal via the IR LED. Almost every remote manufacturer defi nes a different
communications protocol for their devices to prevent interference with another
device. For example, a television should not turn off each time a DVD player is
turned on with a remote..

 The IR remote protocol uses a carrier frequency of approximately 36kHz to emit
a Manchester encoded signal. 0s and 1s cannot be sent simply by assigning LED
on to 1 and LED off to 0. False triggers from ambient light would cause unwanted
commands to be received. Instead, the LED is pulsed at the carrier frequency for a
certain length of time. The IR receiver contains a band pass fi lter designed to only
accept a signal at this frequency and the receiving system measures the time. To
switch between sending high and low, the carrier frequency signal is modulated.

 Manchester encoding works by starting with a known bit value, 0 or 1. The value is
repeated by sending a square wave at a certain frequency. To change the value of
the bit, the amount of low or high time is extended by half a period to change the
phase of the wave. The square wave is repeated again until a change in the bit’s
value is needed.

 Figure 6 shows the carrier frequency from the remote control on top and the
demodulated signal sent to the microcontroller from the receiver on the bottom.
When the signal is present, as shown on the left side of the graph, the output to the
microcontroller is low. The output is high when the signal is completely modulated,
as shown on the right side. Notice the delay of roughly 200us between the start of a
bit period and the output change from the sensor. This is another protection to avoid
sending false information by ensuring that a signal is actually present before making
a change.

14 IR PROTOCOL

Robotics Exercise Book

Figure 7

 Figure 7 shows the entire Manchester encoded power command sent to the VCR.
Follow the wave on the bottom to learn how the signal is decoded. The first low and
high pulses are of equal length meaning they represent one bit. As part of the protocol,
this first bit has the value of one. The next long low pulse means the value of the bit
has changed to a zero. The next two high and low pulses are short meaning the value
of the bit has remained the same. Thus far, 1000 has been decoded in binary. The next
four pulses are all long, representing 1010. Follow the remaining pulses to see that
1000101001100 was received.

 The transmission time for one command is slightly longer than 23ms and commands
are repeatedly sent every 114ms. By the time a button is pressed and released, the
same command is sent multiple times. This makes a remote easier to use if the first
command was received incorrectly because it does not force the user to repress the
button. However, it could cause the same command to be received multiple times. The
IR protocol for the remote included in the kit tries to prevent the problem by alternating
the second bit between 1 and 0. Thus, the other form of the power command is
1100101001100. The receiving system can monitor this bit and only respond to new
commands, like changing the power state, or ignore the bit and respond multiple times,
such as turning the volume up.

CCS, Inc.

#include “robot.h”
#include <N9085UD.c>
#include <servos.c>

void main() {
 int8 button;

 init_servos();
 init_IRremote();

 for(;;) {
 readIRremote(button, TRUE); // Read a button press

 if(button < VCR_FIVE) { // Set the backward speed
 set_servo(LEFT, BACKWARD, button); // to 0, 1, 2, 3, or 4
 set_servo(RIGHT, BACKWARD, button);
 }

 switch(button) {
 case VCR_STOP:
 set_servo(LEFT, FORWARD, 0); // Press stop to stop
 set_servo(RIGHT, FORWARD, 0);
 break;
 case VCR_FASTFWD:
 set_servo(LEFT, FORWARD, 3); // Press FF to turn right
 set_servo(RIGHT, BACKWARD, 0);
 break;
 case VCR_REWIND:
 set_servo(LEFT, BACKWARD, 0); // Press RW to turn left
 set_servo(RIGHT, FORWARD, 3);
 break;
 case VCR_PLAY:
 set_servo(LEFT, FORWARD, 4); // Press play to go forward
 set_servo(RIGHT, FORWARD, 4);
 break;
 }
 }
}

 Now that the principle behind IR communication has been explained, it will be used to
untether the robot from the computer while still allowing external control.

 Create a fi le called ex14.c and type in the following source code:

15 IR CONTROL

Robotics Exercise Book

 Compile the program and download it to the controller board. Insert batteries into the
remote and press the VCR button to put the remote in VCR mode. Press the different
buttons on the remote to control the direction the robot is moving.

 The drivers are composed of two primary parts. The fi rst part searches for the long high
pulse between signals. It then captures the signal by measuring the length of the high
and low pulses and checks the pulses for quality. Sometimes interference and ambient
light cause the IR receiver to send false data to the microcontroller in the form of signal
spikes. The second part takes the received Manchester encoded signal and decodes
it, returning an 8-bit button code and the value of the alternating bit to detect repeated
commanded.

 Right click on N9085UD.c and select Open. Scroll to the error code, VCR buttons and
TV buttons section. This area defi nes the values returned by readIRremote(). Use the
defi nes as in the example to add further functionality to the software.

N
O

T
E

S Both the remote and Servo drivers use timer one. The remote drivers
use it to measure the pulse widths of the incoming signal while the Servo
drivers use CCP1 and CCP2 to compare the current value of timer one
to send pulses. The timer one setup is calculated during compile time by
examining the environment and the number of timer one divisions. The
setup must remain constant for the drivers to function correctly. Edit the
constant after TIMER_1_DIV if the number of timer one divisions needs
to be changed.

CCS, Inc.

#include “robot.h”
#include <N9085UD.c>
#include <servos.c>
#include <wts701.c>
#include <GP2D12.c>

int1 collisionDetect() {
 int8 leftSensor, rightSensor;

 read_ObjectSensors(leftSensor, rightSensor);
 if(leftSensor > 100 || rightSensor > 100) {return 1;}
 else if(leftSensor < 80 && rightSensor < 80) {return 0;}
}

void main() {
 int1 buttonRepeat = 0, runCollisionDetect = TRUE;
 int8 button;
 char phrase1[] = “Hello, my name is pic-robot”;
 char phrase2[] = “Danger Phil Robinson, danger!”;

 tts_init();
 init_servos();
 init_IRremote();
 init_objectSensors();

 for(;;) {
 if(runCollisionDetect && collisionDetect()) {
 stop_servos();
 }

(continued...)

 A remote control can be used to control movement, speak pre-defi ned phrases, start and
stop processes, sleep and more.

 Create a fi le called ex15.c and type in the following source code:

16 ADVANCED IR CONTROL

Robotics Exercise Book

(continued…)

 if(readIRremote(button, FALSE) != buttonRepeat) {
 switch(button) {
 case VCR_ONE: tts_sendText(phrase1); break;
 case VCR_TWO: tts_sendText(phrase2); break;
 case VCR_PLAY: set_servo(LEFT, FORWARD, 1);
 set_servo(RIGHT, FORWARD, 1); break;
 case VCR_REWIND: set_servo(LEFT, BACKWARD, 1);
 set_servo(RIGHT, FORWARD, 3); break;
 case VCR_FASTFWD: set_servo(LEFT, FORWARD, 3);
 set_servo(RIGHT, BACKWARD, 1); break;
 case VCR_STOP: stop_servos(); break;
 case VCR_POWER: ++runCollisionDetect; break;
 }
 if(button != VCR_TV_ERR)
 ++buttonRepeat;
 }
 }
}

 Compile the program and download to the controller board. Set the robot in an open
area on the fl oor. Press the different buttons to make the robot speak and move around.

 The part of the IR protocol for detecting repeated buttons is used in this example. It was
not necessary in ex14.c because it does not matter if the robot is told to head in the
same direction multiple times. In ex15.c, text is being sent to the text to speech chip and
collision detection is being turned on and off with one button. Without the repeat button
check, collision detection would be enabled and disabled many times with one press of
the power button.

CCS, Inc.

 The purpose of an operating system is to schedule different tasks competing for the
same resources. Preemptive scheduling is a common method. Each process gets
its own process block, which contains a stack and copies of the various registers,
such as the program counter. When the operating system preemptively stops a
process, the process is not yet fi nished. Its state must be saved in its process block.
The method of saving one process block and restoring another is called a context
switch. Each process is repeatedly run for a very short time, so it seems like they are
all running at once. A preemptive scheduling system is not well suited for the PIC®
MCU because of the way the stack is implemented. The CCS C compiler uses a
different method similar to batch processing, where each task is allowed to run until
completion.

 The built-in operating system is comprised of three basic parts: major cycles, minor
cycles and task execution rates. One complete run of all active tasks is one major
cycle. The execution rates are used to calculate the amount of time in a minor cycle.
Each tasks’ rate must be a multiple of the minor cycle time. To achieve exact rates,
the operating system wastes time not used by the tasks. This is done by counting
the number of minor cycles until another task is run. Tasks can be stopped, started
and even ended early to give up the rest of their time to the next task. If requested,
the operating system will keep timing statistics. It will store the shortest and longest
runtime of a task as well as the total time it has been running. Timing information is
useful when confi guring the different tasks. Time information ensures each task is
given enough time to execute and that all resources are available.

 It is often necessary for one task to transmit some information to another task. The
built-in operating system offers an easy way to handle these messages. Each task is
given a message buffer to store incoming messages. Next, it then polls for received
messages and reads them if present. Each message is one byte.

 Sometimes two or more tasks need to use the same memory region or port. An
integer called a semaphore makes this possible. When a task needs to access a
restricted region, it waits for the semaphore to be greater than zero. Once true, the
semaphore is decremented, preventing other tasks from accessing the restricted
area. The task then enters what is called a critical section. This block of code must
be executed quickly. After the critical section, the task signals the restricted area and
the area is opened by incrementing the semaphore. Any clean-up is then done in the
remainder section.

17 REAL TIME OPERATING SYSTEM
(RTOS) BASICS

Robotics Exercise Book

#include “robot.h”
#use rtos(timer=0, minor_cycle=1ms)

#task(rate=20ms,queue=8)
void task1()
{
 if(rtos_msg_poll() > 0)
 {
 putc(rtos_msg_read());
 }
}

#task(rate=20ms)
void task2()
{
 if(kbhit())
 {
 rtos_msg_send(task1, getc());
 }
}

void main()
{
 rtos_run();
}

 Create a fi led called ex16.c and type in the following source code:

 Compile the program and download to the controller board. Connect the RS-232 cable
and press buttons on the keyboard. Task one is set to run every 20ms. Task 1 checks
if there is a character in the RS-232 buffer, and sends it in a message to task two.
Task 2 checks its message buffer for data ever 20ms. If there is data, Task 2 sends
it over RS-232 to the computer. These two tasks together create a simple character
echoing system.

CCS, Inc.

 Using tasks to sample the different sensors on the robot makes it easy to handle the
variety of inputs. Since the operating system has the capability to enable and disable
tasks, it is easy to control which sensors are active.

 Create a fi le called ex17.c and type in the following source code:

#include “robot.h”
#include <N9085UD.c>
#include <servos.c>
#include <GP2D12.c>
#include <wts701.c>
#use rtos(timer=0)

#task(rate=20ms, queue=5) //Task 2
void task_servoControl()
{
 if(rtos_msg_poll() > 0)
 {
 switch(rtos_msg_read())
 {
 case 0x10: stop_servos();
 break;
 case 0x11: set_servo(RIGHT, FORWARD, 3);
 set_servo(LEFT, FORWARD, 0);
break;
 case 0x12: set_servo(RIGHT, FORWARD, 0);
 set_servo(LEFT, FORWARD, 3);
break;
 case 0x13: set_servo(RIGHT, FORWARD, 3);
 set_servo(LEFT, FORWARD, 3);
break;
 }
 }
}

(continued...)

18 RTOS APPLICATION

Robotics Exercise Book

(continued...)

#task(rate=10ms) //Task 1
void task_collision()
{
 if(read_leftObjectSensor() > 100
 || read_rightObjectSensor() > 100)
 {
 rtos_msg_send(task_servoControl, 0x10);
 }
}

#task(rate=200ms) //Task 3
void task_servo_IR()
{
 static int8 repeat = 0;
 int8 button;

 if(readIRremote(button, FALSE) != repeat)
 {
 switch(button)
 {
 case VCR_PLAY: rtos_msg_send(task_servoControl,
0x13); break;
 case VCR_REWIND: rtos_msg_send(task_servoControl, 0x12);
break;
 case VCR_FASTFWD: rtos_msg_send(task_servoControl,
0x11); break;
 case VCR_STOP: rtos_msg_send(task_servoControl,
0x10); break;
 }

 if(button != VCR_TV_ERR)
 {
 ++repeat;
 }
 }
}

#task(rate=100ms) //Task 4
void task_IR()
{
 static int8 pStates = 0x07;
 int8 button;
 char msg[23];
(continued...)

 (continued...)

 if(readIRremote(button, FALSE))
 {
 if(button < 4)
 {
 if(bit_test(pStates, button))
 {
 bit_clear(pStates, button);

 switch(button)
 {
 case 1: rtos_disable(task_servoControl);
 sprintf(msg, “Servo control disabled”);
 break;
 case 2: rtos_disable(task_collision);
 sprintf(msg, “Collision disabled”);
 break;
 case 3: rtos_disable(task_servo_IR);
 sprintf(msg, “Remote Disabled”);
 break;
 }
 }
 else
 {
 bit_set(pStates, button);

 switch(button)
 {
 case 1: rtos_enable(task_servoControl);
 sprintf(msg, “Servo control enabled”);
 break;
 case 2: rtos_enable(task_collision);
 sprintf(msg, “Collision enabled”);
 break;
 case 3: rtos_enable(task_servo_IR);
 sprintf(msg, “Remote Enabled”);
 break;
 }
 }
 tts_sendtext(msg);
 tts_waitConversion();
 }
 }
}
(continued...)

18 RTOS APPLICATION (CONT.)

CCS, Inc.

 Download the program to the controller board. Test the program by pressing different
buttons on the remote. Drive the robot toward an obstacle. Once it stops, press the Play
button to go forward again. Notice how long it takes the robot to stop. Change the rate
of the collision detection task so it is not executed as often and repeat. The robot should
drive forward longer before stopping again.

 Each task performs a different function. The fi rst task (task_servoControl) will check if
a movement command is in the movement queue. If so, it changes the Servo motion
to match the command. The second task (task_collision) uses the proximity sensors
to sense any objects in the robot’s path. The third task (task_servo_IR) accepts
commands from the remote that change the Servo motion and stores the command in
the movement queue. The fourth task (task_IR) enables and disables the other three
tasks based on commands from the remote.

 The fi rst three tasks can be disabled and enabled by pressing the corresponding
numbered button on the remote. The behavior of the robot will change depending
on which tasks are enabled at the time. The following chart will outline the expected
behavior of the robot.

 Task Name Robot Behaviors
servoControl Collision Servo_IR

 Continues last movement indefinitely.
� Stores movement commands.

� Avoids collisions.
� Changes movement.

� � Stores movement commands and avoids collisions.
� � Stores movement commands and changes movement.
� � Changes movement and avoids collisions.
� � � Performs all tasks (default)

(continued...)

void main()
{
 init_servos();
 init_IRremote();
 init_objectSensors();
 tts_init();
 rtos_run();
}

Robotics Exercise Book

CCS, Inc.

 Create a fi le called ex18.c and type in the following source code:

#include “robot.h”
#include <N9085UD.c>
#include <servos.c>
#include <wts701.c>
#include <GP2D12.c>
#include <compass.c>
#include <line_tracker.c>

int1 collisionDetect()
{
 int8 leftSensor, rightSensor;

 read_ObjectSensors(leftSensor, rightSensor);
 if(leftSensor > 100 || rightSensor > 100)
 return 1;
 else if(leftSensor < 80 && rightSensor < 80)
 return 0;
}

void main()
{
 int1 l, r, runCollisionDetect = TRUE, buttonRepeat = 0;
 int8 button;
 char s[14];

 tts_init();
 init_servos();
 compass_init();
 init_IRremote();
 init_lineTracker();
 init_objectSensors();

 for(;;)
 {
 if(runCollisionDetect && collisionDetect())
 {
 stop_servos();
 }
 else
 {
 l = lt_check(LT_LEFT);
 r = lt_check(LT_RIGHT);
(continued...)

19 COMPLETE APPLICATION

CCS, Inc.

Robotics Exercise Book

 Compile the program and download it to the controller board. The program makes use of
all parts on the robot, except for RS-232. The line tracking sensors and Servos are used
to follow a line. The proximity sensors detect objects in the robot’s path. Finally, a talking
compass gathers the current robot orientation and sends it to the text-to-speech chip.

(continued...)
 if(l && !r)
 {
 set_servo(LEFT, FORWARD, 0);
 set_servo(RIGHT, FORWARD, 3);
 }
 else if(r && !l)
 {
 set_servo(RIGHT, FORWARD, 0);
 set_servo(LEFT, FORWARD, 3);
 }
 else
 {
 set_servo(RIGHT, FORWARD, 3);
 set_servo(LEFT, FORWARD, 3);
 }
 if(readIRremote(button, FALSE) != buttonRepeat)
 {
 switch(button)
 {
 case VCR_POWER: ++runCollisionDetect;
break;
 case VCR_EJECT:
 stop_servos();
 delay_ms(20);
 sprintf(s, “%lu degrees\0”, compass_getAngle());
 tts_sendText(s);
 break;
 }
 if(button != VCR_TV_ERR)
 ++buttonRepeat;
 }
 }
 }
}

Robotics Exercise Book

CCS, Inc.

Appendix A
CCS recommends using Nickel-Metal-Hydride, or NiMH, rechargeable batteries.
For more information on battery types, please visit this website:
http://www.junun.org/MarkIII/Manual/Appendix.jsp
For more detailed instructions on assembling the robot, check out the manufacturer’s website
at: http://junun.org

Advanced Project Ideas
The example programs throughout this exercise book are intended to introduce the reader
to C programming on the Microchip PIC® and to controlling the robot. The sensor readings
are used in basic ways just to show how they operate. This section of the book contains
suggestions for using the included sensors and suggestions for other sensors that can be
added to the expansion port.
Chapter 9 used the proximity sensors as one logical unit. It treated the left and right sensors
equally and halted the robot if anything was detected. A smarter design would examine the
value returned by each sensor independently and make a judgment for whether to turn left or
right to avoid the object in advance. The distance from an object could also be compared to
the speed of the servos to control how fast to turn.
The robot comes with everything needed to enter a robot sumo competition. The line sensors
detect the edge of the ring, the proximity sensors find other robots, and the wheels have
rubber grips for better traction; even the text to speech chip can be used for a victory slogan.
See the Robot Resources section for robot sumo guides and rules.
Chapter 12 discussed the use of the electronic compass, but did not use it for navigation.
Create a program that uses the compass to travel in a certain direction. If the robot
encounters an obstacle, it should attempt to go around and return to its original path. Note
that the Servos create magnetic interference, so the robot should be halted when taking a
compass reading.
A simple way to navigate a maze is to make a left turn whenever possible. Create a more
sophisticated method by remembering wrong turns to solve it quicker. Store the solution to
the maze so it can be repeated or reversed.
Create a firefighting robot by inserting a photoresistor and thermoresistor into the expansion
ports on the controller board. Use them to find sources of light and heat without getting too
close. The photoresistor could also be used to make the robot follow a flashlight.
Combine the firefighting robot with the maze navigation to find a fire, extinguish the fire, and
return the robot back to where it started.

Robotics Exercise Book

Use the IR remote to select a series of movements. Save the movements and how long the
robot drove in each direction. After 10 direction changes or the press of a special key, replay
the series of movements.
Create a soccer-playing robot. Have it find a ball and push it into a net without stepping out of
bounds. Many robot soccer fields are created with varying shades of color allowing the robot
to use the analog voltage readings from the line sensors to know exactly where it is.

Robot Resources
Visit some of the following websites for more information on robotics, robot parts, robot com-
petitions and design ideas.

Internet Address Features

http://www.robotroom.com An informative guide to designing and building robots
and an illustrated guide to the robot sumo competition.

http://www.robolympics.net Information about a weekend of robot competitions.
Rules for most events are available.

http://www.robotics.com Information about robot clubs, parts and accessories.
Check out their extensive list of robts for ideas.

http://www.robotbooks.com A great site to find literature for a variety of topics such
as robot sports, electronics, mechanics, and minds.

http://www.parallax.com Visit the robot pages for information and to purchase
more robot components, accessories, and kits.

On The Web
Comprehensive list of PIC® MCU
Development tools and information www.mcuspace.com

Comprehensive list of PICmicro®
Development tools and information

www.pic-c.com/links

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

CCS, Inc.

Appendix B
RS-232
 RS-232 is a popular communication protocol used on most PCs and many embedded

systems. Two signal wires transmit and receive data and a third wire is for ground.
The PIC16F877A has built in hardware to buffer serial data when using pin C6 for
transmitting and C7 for receiving. The compiler can use any pins, but will take advantage
of the built in hardware when using C6 and C7.

 Add the following line of code to enable RS-232 communication:
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

 The #use rs232 directive enables the following functions. Read more about them in the
help or reference manual included with the compiler.

 Create a new source file called ex_rs232.c and type in the following code:
 #include <16F877A.h>
 #fuses HS,NOLVP,NOWDT,NOPROTECT,NOBROWNOUT
 #use delay(clock=20000000)
 #use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)

 void main() {
 printf(“Press keys and they will be echoed back\n\r”);
 for(;;) {
 putc(getc());
 }
 }

 Compile the program and load it to the protoboard.

 Connect the protoboard to the PC with the serial to 3.5mm stereo plug cable.

 Click Tools > Serial Port Monitor within the PCW IDE.

 Configure the COMM port if necessary by clicking Configuration > Set port options.

 Power the protoboard and press keys send characters.

 See input.c in the Drivers directory and ex_float.c, ex_exsio.c and ex_sisr.c in the
Examples directory for further information.

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
 · Specify operational settings at the execution level
 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface
 · Simply point, click and program
 · Additions to HEX file organization include associating comments or a graphic image
 to a file to better ensure proper file selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics
 · Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specific driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a file list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™
 · All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help file for additional assistance.

G G

A3 A5

A5 A3

D5 D4

D3 D2

D1 D0

+ +

O
FF O
N

C1

1R-
RX

CCS, Inc.

