
Development Kit
For the PIC® MCU

Exercise Book

Embedded Serial Busses

March 2010

Copyright © 2010 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

CCS, Inc.

1 UNPACKING AND INSTALLATION

Inventory
 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must have a

spare 9-Pin Serial or USB port, a CD-ROM drive and 75 MB of disk space.

 The diagram on the following page shows each component in the Embedded Serial Busses kit.
Ensure every item is present.

Software
 Insert the CD into the computer and wait for the installation program to start. If your computer is not set

up to auto-run CDs, then select Start>Run and enter My Computer and double-click on the CD drive.

 Click on Install and use the default settings for all subsequent prompts by clicking NEXT, OK,
CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will have
created an empty directory c:\program fi les\picc\projects that may be used for this purpose.

 Select the compiler icon on the desktop. In the PCW IDE, click Help>About and verify a version
number is shown for the IDE and PCM to ensure the software was installed properly. Exit the software.

Hardware
 Connect the PC to the ICD(6) using the USB cable.(1) Connect the prototyping board (9) to the

ICD using the modular cable. Plug in the DC adaptor (8) to the power socket and plug it into the
prototyping board (10). The fi rst time the ICD-U is connected to the PC, Windows will detect new
hardware. Install the USB driver from the CD or website using the new hardware wizard. The
driver needs to be installed properly before the device can be used.

 The LED should be red(2) on the ICD to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the desktop.
Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LED should be
illuminated green. If any errors are detected, go to Diagnostic tab. If all tests pass, the
hardware is installed properly.

 Disconnect the hardware until you are ready for Chapter 4. Always disconnect the power to the
Prototyping board before connecting/disconnecting the ICD or changing the jumper wires to the
Prototyping board.

(1) ICS-S40 can also be used in place of ICD-U40. Connect it to an available serial port on the PC using the
9 pin serial cable. There is no driver required for S40.

(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

Embedded Serial Busses Exercise Book

1 Storage box
2 Exercise booklet
3 CD-ROM of C compiler (optional)
4 Serial PC to Prototyping board cable
5 Modular ICD to Prototyping board cable
6 ICD unit for programming and debugging

 7 USB PC to ICD cable
 8 AC Adaptor (9VDC)

9 Prototyping board for embedded serial busses
 (See inside front and back cover for details on the board layout and schematic)

ICD-U64

PIC
12F

683

CCS, Inc.

2 USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: c:\program fi les\picc\examples\ex_stwt.c

 Scroll down to the bottom of this fi le. Notice the editor shows comments, preprocessor directives
and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a Help fi le description for
set_timer0 appears. The cursor may be placed on any keyword or built-in function and F1 will fi nd
help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various standard cut, paste
and copy functions.

 Review the editor option settings by clicking on Options>Editor Properties. The IDE allows
selection of the tab size, editor colors, fonts, and many more. Click on Options>Toolbar to select
which icons appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different compilers

for each family of Microchip parts. All the exercises in this booklet are for the PIC16F877A and
PIC16F876A, a 14-bit opcode part. Make sure PCM 14 bit is selected in the drop-down box under
the Compiler tab.

 The main program compiled is always shown in the bottom of the IDE. If this is not the fi le you
want to compile, then click on the tab of the fi le you want to compile. Right click into editor and
select Make fi le project.

 Click Options>Project Options>Include Dirs… and review the list of directories the compiler
uses to search for included fi les. The install program should have put two directories in this list:
devices and drivers.

 Normally the fi le formats need not be changed and global defi nes are not used in these exercises.
To review these settings, click Options>Project Options>Output Files and Options>Project
Options>Global Defi nes.

 Click the compile icon to compile. Notice the compilation box shows the fi les created and the
amount of ROM and RAM used by this program. Press any key to remove the compilation box.

Embedded Serial Busses Exercise Book

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the micro-controller is used.

Identifiers that start with @ are compiler generated variables. Notice some locations are used
by more than one item. This is because those variables are not active at the same time.

 Click Compile>C/ASM List. This file shows the original C code and the assembly code
generated for the C. Scroll down to the line:
 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W register.
INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal. The second
instruction moves W into memory. Switch to the Symbol Map to find the memory location
where int_count is located.

 Click View>Data Sheet, then View. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files and Projects are created,
opened, or closed using this menu.

Place cursor here for slide out boxes.
All of the current project’s source and
output files can be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using
this menu.

Compiles current selected unit, does NOT link/build
into a HEX file.

Quick view of supported devices.

Compiles all units that have changed since last build,
links/builds into a HEX file.

Compiles all units regardless if they have changed since
last build, links/builds into a HEX file.

CCS, Inc.

 This development kit includes a prototyping board designed to exercise a number of serial bus
protocols. There is a layout in the front cover identifying the connectors. The full schematic is in
the back cover. A block diagram of the board is shown on the next page.

 The board has two microprocessors. Node A is a PIC16F877A part and node B is a PIC16F876A
part. Each node has an ICD interface for programming, three LEDs, a pushbutton, and RS-232
port. The two nodes are connected to a common I2C bus and there are two additional wires
connecting the two nodes that may be used for communication. One wire is connected to an
interrupt pin on each node.

 The I2C bus also has a digital thermometer chip (DS1631) and EEPROM chip (24LC08). Both
parts are I2C bus slave devices. The two microprocessor nodes can be set up as master/master,
master/slave or master/idle.

 The remaining serial devices on the board are set up in a three wire SPI confi guration. In this
confi guration each device shared a common clock. Each device has a dedicated select wire used
to identify what device should pay attention to the clock and data. This bus is connected to only
node A.

 A real time clock chip (DS1305E) is on the SPI bus.

 The board has eight DIP switches connected to a 74165 chip. This chip is simple parallel to serial
shift register and sits on the SPI bus. This allows for 8 additional input lines to the microprocessor
using the three wire SPI bus.

 The board has four 7-segment LED units each connected to a 74595 chip. These chips sit on the
SPI bus, they are cascaded together and provide together 32 output lines using the three wire SPI
bus.

 A piezo buzzer is connected to Node B. This can be used to make software controlled tones.

 The DC voltage into the board is divided down and fed to an ADC input so the input voltage can be
measured.

3 PROTOTYPING BOARD OVERVIEW

Embedded Serial Busses Exercise Book

E0

A4

RS232

ICD

C6,C7

A0

A4

RS232

ICD

C6,C7

A1

A2

B1

B4

A5

RED

YELLOW

GREEN

D2 Load
D0 Clock
D1 Data

74165

DS1305E
REAL TIME

CLOCK

D1 Load
D0 Clock
D4 Data

D6 Select
D0 Clock
D1 Data

NODE A
PIC16F877A

NODE B
PIC16F876A

B0 B2

B2 B0

2408
EEPROM

DS1631
TEMP SEN

I2C

I2C

74595 74595 74595

RED

YELLOW

GREEN A3

Power In

C4 SDA
C3 SCL

C4 SDA
C3 SCL

C2

A1

74595

CCS, Inc.

 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>New>Source File and enter the fi lename EX4.C

 Type in the following program and Compile.

4 COMPILING AND
RUNNING A PROGRAM

#include <16f877A.h>
#device ICD=TRUE
#fuses HS,NOLVP,NOWDT,PUT
#use delay (clock=10000000)

#defi ne GREEN_LED PIN_A5

void main () {
 while (TRUE) {
 output_low (GREEN_LED);
 delay_ms (1000);
 output_high (GREEN_LED);
 delay_ms (1000);
 }
}

N
O

T
E

S

 The fi rst four lines of this program defi ne the basic hardware
environment. The chip being used is the PIC16F877A, running at 10MHz with
the ICD debugger.

 The #defi ne is used to enhance readability by referring to
GREEN_LED in the program instead of PIN_A5.

 The “while (TRUE)” is a simple way to create a loop that never stops.

 Note that the “output_low” turns the LED on because the other end
of the LED is +5V. This is done because the chip can tolerate more current
when a pin is low than when it is high.

 The “delay_ms(1000)” is a one second delay (1000 milliseconds).

Embedded Serial Busses Exercise Book

 Connect the ICD to the Prototyping board using the modular cable, and connect the ICD to
the PC. Power up the Prototyping board.

 Click Debug>Enable Debugger and wait for the program to load.

 Click the green go icon:

 Expect the debugger window status block to turn yellow indicating the program is running.

 The green LED on the Prototyping board should be flashing. One second on and one second off.

 The program can be stopped by clicking on the stop icon:

 Modify the program to light the green LED for 5 seconds, then the yellow for
1 second and the red for 5 seconds.

 Add to the program a #define macro called “delay_seconds” so the
delay_ms(1000) can be replaced with : delay_seconds(1); and
delay_ms(5000) can be: delay_seconds(5);.

Note: Name these new programs EX4A.c and EX4B.c and follow the same
 naming convention throughout this booklet.

A

B

FURTHER STUDY

ICD-U64

CCS, Inc.

5 SERIAL-TO-PARALLEL
SHIFT REGISTERS

 The 74595 is a serial to parallel shift register. It has eight stages. Each stage has a clock and data
input. Data is loaded into the shift register when the clock pin changes from a low to high. The eight
shift registers are connected together such that the data line is connected to the fi rst register and that
registers latch output is connected to the next stage and so on. For example consider the following
waveform:

 This loads the bit pattern 01010100 into the eight registers. To understand the process the following
table shows the values in the eight registers after each rising edge of the clock. The left-most bit is the
MSB and X represents unknown:

X X X X X X X 0

X X X X X X 0 1

X X X X X 0 1 0

X X X X 0 1 0 1

X X X 0 1 0 1 0

X X 0 1 0 1 0 1

X 0 1 0 1 0 1 0

0 1 0 1 0 1 0 0

 The 74LS595 has a second set of registers that drive the outputs. The data is copied from the fi rst set of
registers to the second set when the RCLK pin changes from a low to high. After the shift register has all
the data in place one pulse on RCLK will cause the eight outputs to change to the new values at once.
This prevents the outputs from changing while data is being shifted in. The waveform with the fi nal pulse
looks like this:

�����

����

�����

����

����

Embedded Serial Busses Exercise Book

 The following code can be used to generate the previous pattern:

The shift_left function shifts data one bit to the left and the value returned from the function is the bit
shifted out of the byte (0 or 1).
The output_bit function sets a pin (SPI_DATA) high or low depending on the value of the second
parameter (the bit shifted out of data).
The fi rst bit shifted into the shift register is the MSB and after eight clocks the MSB bit is now in the
last shift register (register H).
The microprocessor operates much slower than the 74595 so timing is not a problem. Some other
devices may require the clock to be high for a certain time or some other time requirement. For
these devices add a delay_us(...) at the right spot(s) in the for loop.

 The output from the eighth shift register is provided on a pin of the 74595 allowing any number of 74595
parts to be connected together to make the shift register as long as you want. In this confi guration the
same clock and RCLK is connected to each 74595. The data is only connected to the fi rst part. The
fi rst chips shift out pin (named Q’h) is connected to the second parts data in. This is repeated for each
chip. In this confi guration eight data bits are clocked in for each chip. For example there are four chips
connected together on the prototype board. There will need to be 32 clock pulses to load all four chips.
The code now becomes:

In the above example the last part in the chain will have 0x54. The part with the real data line
connected (fi rst in the chain) will have 0x10. This is because array location data[0] is transferred out
fi rst. In order to do this the output_bit() could not be used and was replaced with an if statement.

The following code can be used to generate the previous pattern:
int data=0x54;

for(i=1;i<=8;++i) {
 output _ bit(SPI _ DATA, shift _ left(&data,1,0));
 output _ high(SPI _ CLOCK);
 output _ low(SPI _ CLOCK);
}
output _ high(SPI _ RCLK);
 output _ low(SPI _ RCLK);

int data[NUMBER _ OF _ 74595]={0x54,0x32,0x49,0x10};

for(i=1;i<=NUMBER _ OF _ 74595*8;++i) {
 if((data[NUMBER _ OF _ 74595-1] & 0x80)==0)
 output _ low(SPI _ DATA);
 else
 output _ high(SPI _ DATA);
 shift _ left(data,NUMBER _ OF _ 74595,0);
 output _ high(SPI _ CLOCK);
 output _ low(SPI _ CLOCK);
}
output _ high(SPI _ RCLK);
output _ low(SPI _ RCLK);

CCS, Inc.

APPLICATION WITH
7 SEGMENT LEDS6

 The four 7-segment LEDs each have eight control lines (7-segments plus the decimal point)
connected to its own 74595. The left most LED module is the fi rst in the chain. The connection of
each segment to the 74595 is shown below:

 Included with the C compiler is a driver for the 74595. To use the functions the
pins for SPI must be #defi ned and and array with the data is passed to
write_expanded_outputs(). Bit H is the most signifi cant bit of the data.

 The following program will count from 1 to 9999 on the LED display of the prototyping board.

 Enter the following code in a fi le named EX6.c, load and run the program.

Embedded Serial Busses Exercise Book

#include <16F877A.h>
#device ICD=TRUE
#fuses HS, NOLVP, NOWDT, PUT
#use delay(clock = 10000000)

#defi ne EXP _ OUT _ DO PIN _ D1
#defi ne EXP _ OUT _ CLOCK PIN _ D0
#defi ne EXP _ OUT _ ENABLE PIN _ D2
#defi ne NUMBER _ OF _ 74595 4
#include <74595.c>

const byte number[10] = {0x3F, 0x06, 0x5B, 0x4F, 0x66, 0x6D, 0x7D, 0x07, 0x7F, 0x6F};

void led _ display _ number(long int data)
{
 int time _ array[4];

 time _ array[0] = number[data / 1000 % 10];
 time _ array[1] = number[data / 100 % 10];
 time _ array[2] = number[data / 10 % 10];
 time _ array[3] = number[data % 10];

 write _ expanded _ outputs(time _ array);
 output _ low(EXP _ OUT _ ENABLE);
}

void main()
{
 long int time = 0;

 output _ low(PIN _ D6); //disable RTC

 while(true)
 {
 led _ display _ number(time);
 time++;
 delay _ ms(1000);
 }
}

 Begin a fi le with a collection of useful functions. Call the fi le ESBProto.c and put in it the #defi nes,
then #include <74595.c>, and led_display_number().

CCS, Inc.

7 DEBUGGING

 Using the code from chapter 6 start the debugger Debug>Enable Debugger.

 Click the reset icon to ensure the target is ready.

 Click the step-over icon twice. This is the step over command. Each click causes a
line of C code to be executed. The highlighted line has not been executed, but the line
about to be executed.

 Step over the led _ display _ number(time); line and notice that one click
executed the entire function. This is the way step over works. Click step over on the next
two lines, and wait for the delay to fi nish.

 Click the Watch tab, then the add icon to add a watch. Enter time or choose time
the variables from list, then click Add Watch. Notice the value shown. Continue to
step over through the loop a few more times (wait as required) and notice the time watch
increments.

 Step over until the call to led _ display _ number(time); is highlighted. This
time, instead of step over, use the standard step icon several times and notice the
debugger is now stepping into the function.

 Click the GO icon to allow the program to run. Watch the 7-segment LED’s to see
the program run. Click the stop icon to halt execution.

 In the editor, click on led _ display _ number(time); to move the editor cursor to
that line. Then click the Breaks tab and click the add icon to set a breakpoint. The
debugger will now stop every time that line is reached in the code. Click the GO icon.
The debugger should now stop on the breakpoint. Repeat this a couple of times to see
how the breakpoint works.

 Click Compile>C/ASM list. Scroll down to the highlighted line. Notice that one assembly
instruction was already executed for the next line. This is another side effect of the ICD-S
debugger. Sometimes breakpoints slip by one ASM instruction.

 Click the step over icon a few times and note that when the list fi le is the selected
window, the debugger has executed one assembly instruction per click instead of one
entire C line.

 Close all fi les and start a new fi le EX7.c as follows:

Embedded Serial Busses Exercise Book

 Compile the program and step-over until the c=a+b is executed. Add a watch for c and
the expected value is 16.

 Step-over the subtraction and notice the value of c. The int data type by default is
not signed, so c cannot be the expected –6. The modular arithmetic works like a car
odometer when the car is in reverse only in binary. For example, 00000001 minus 1 is
00000000, subtract another 1 and you get 11111111.

 Reset and again step up to the c=a+b. Click the Eval tab. This pane allows a one time
expression evaluation. Type in a+b and click Eval to see the debugger and calculate the
result. The complete expression may also be put in the watch pane as well. Now enter
b=10 and click Eval. This expression will actually change the value of B if the “keep side
effects” check box of the evaluation tab is checked. Check it and click Eval again. Step
over the addition line and click the Watch tab to observe the c value was calculated with
the new value of b.

#include <ESBProto.c>

void main() {
 int a,b,c;

 a=11;
 b=5;
 c=a+b;
 c=b-a;
 while(TRUE);
}

Modify the program to include the following C operators to see how they work:
* / % & ^
Then, with b=2 try these operators: >> <<
Finally, try the unary complement operator with: c=~a;
Design a program to test the results of the relational operators:
< > = = !=
by exercising them with b as 10, 11, and 12.
Then, try the logical operators || and && with the four combinations of a=0,1
and b=0,1.
Finally, try the unary not operator with: c=!a; when a is 0 and 1.

A

B

FURTHER STUDY

CCS, Inc.

8 PARALLEL-TO-SERIAL
SHIFT REGISTER

 The eight DIP switches on the prototyping board are connected to a 74165 parallel to serial shift
register. This part takes the eight inputs and with each clock pulse shifts them out bit for bit to the
data pin. When the Shift/Load pin on the part is high then the data line output is high impeadance.
When the pin goes low then the data is latched and shifted out each time the clock goes high.

 The code to read a 74165 looks like this:

output _ high(SPI _ ENABLE);
output _ low(SPI _ ENABLE); // Latch all inputs
output _ high(SPI _ ENABLE); // Enter shift mode

for(i=1;i<=8;++i) {
 shift _ left(&data,1,input(SPI _ DATA));
 output _ low(SPI _ CLOCK);
 output _ high(SPI _ CLOCK);
}
output _ low(SPI _ ENABLE);

#include <ESBProto.c>

#defi ne EXP _ IN _ ENABLE PIN _ D1
#defi ne EXP _ IN _ CLOCK PIN _ D0
#defi ne EXP _ IN _ DI PIN _ D4
#defi ne NUMBER _ OF _ 74165 1
#include <74165.c>

void main()
{
 int dips;

 while(true)
 {
 read _ expanded _ inputs(&dips);
 led _ display _ number(dips);
 delay _ ms(100);
 }
}

 The following program reads the eight switches, uses the eight positions as an eight bit number
then displays the number of the LED display. Enter the following code in a fi le named EX8.c, load
and run the program.

Embedded Serial Busses Exercise Book

��

��

��

��

 In this diagram, the PIC16F877A reads the number 0x73 from the DIP switches, and then outputs
0x3F06066D to display the decimal number 0115 on the LEDs. The 74165 uses pin D4 for data,
while the 74595s use pin D1.

#defi ne EXP _ OUT _ DO PIN _ D1
#defi ne EXP _ OUT _ CLOCK PIN _ D0
#defi ne EXP _ OUT _ ENABLE PIN _ D2

CCS, Inc.

ADVANCED DEBUGGING9
 RS-232 printf statements can be a good tool to help debug a program. It does, however,

require an extra hardware setup to use. If the ICD is being used as a debug tool, the
compiler can direct putc() and getc() through the debugger interface to the debugger
screen. Add the following line to the code from Chapter 8 after including the ESBProto.c fi le:

#use RS232(DEBUGGER, xmit = PIN_B5, rcv = PIN_B5)

 Save the code from section 8 and name it EX9.c. Add the following line of code after the
call to read_expanded_inputs (&dips);

printf(“read dips: %X\r\n”, dips);

 Compile and load the program into the Prototyping board.
 Click GO, then click the Monitor tab.
 A prompt should appear. Enter some data to confi rm that the program is working.
 Stop and reset the program.
 Set a breakpoint on the line:

printf(“read dips: %X\r\n”, dips);

 Click the debugger Break Log tab, check the LOG box, set the breakpoint as 1 and
expression as dips.

 Click GO, then click the Log tab and notice that each time the breakpoint was hit the value
of the dips variable was logged. In this case the breakpoint did not cause a full stop of the
program, it just logged the value of the requested expression and kept on going.

 Stop the program.
 Uncheck the LOG box under the log tab.
 Enter a watch for dips.
 Click GO and when the break is reached click on the snapshot icon:
 Check Time and Watches, uncheck everything else.
 If a printer is connected to the PC select Printer, otherwise select Unique fi le and name it

EX9.TXT.
 Click on the Now button.
 Notice the requested data (time and watches) are either printed or written to a fi le as

requested.
 Click on the snapshot icon again and this time select Append to fi le and check After

each single step.

Embedded Serial Busses Exercise Book

 Check Last C line executed in addition to the Time and Watch selected already and
close the snapshot window.

 Reset and then Step Over until the final printf() is executed.
 Use File>Open>Any File to find the file EX9.TXT (by default in the Debugger Profiles

directory) after setting the file type to all files.
 Notice the log of what happened with each step over command.
 Uncheck the After each single step in the snapshot window.
 Clear the breakpoints and set a breakpoint on the led_display_number(dips);.
 Click Reset then Go.
 When the break is reached click on the Peripherals tab and select Timer 0.
 Shown will be the registers associated with timer 0. Although this program does not use

timer 0 the timer is always running so there is a value in the TMR0 register. Write this
value down.

 Clear the breakpoints and set a breakpoint on the final printf().
 Click GO.
 Check the TMR0 register again. If the new value is higher than the previous value then

subtract the previous value from the current value. Otherwise, add 256 to the current
value and then subtract the previous value (because the timer flipped over).

 The number we now have is the number of clock ticks it took to execute the switch and
addition. A clock tick by default is 0.2ms. Multiply your number of ticks by 0.2 to find the
time in ms. Note that the timers (and all peripherals) are frozen as soon as the program
stops running.

The debugger Eval tab can be used to evaluate a C expression. This
includes assignments. Set a break before the switch statement and use the
Eval window to change the operator being used. For example, type a + but
change it to a - before the switch.
Set a break on the switch statement and when reached, change to the
C/ASM view and single step through the switch statement. Look up the
instructions executed in the PIC16F877A data sheet to see how the switch
statement is implemented. This implementation is dependent on the case
items being close to each other. Change * to ~ and then see how the
implementation changes.

A

B

FURTHER STUDY

CCS, Inc.

10 3-WIRE SPI BUS REAL TIME
CLOCK AND RS-232

 The Real time clock chip on the prototyping board (DS1305) has a three wire interface as well.
 Unlike the previous three wire interfaces the RTC chip has a more complex protocol on top

of the basic byte transfer. All transfers begin with a write to the RTC of 8 bits. The low 7 bits
represent a register address in the part. If the top bit is 0 then this is a read request. If the
top bit is 1 then this is a write.

 As an example register #1 is the minutes register. Sending a 0x81 followed by a 0x02 will
set the minutes to 2. Sending a 0x01 followed by a read will return the current minutes.

 Many of the registers in the DS1305 are in BCD format. Numbers in the microprocessor
are stored in binary format. BCD treats each base 10 digit as 4 bits in binary. For
example the number 35 in binary is 00100011. In the BCD format it is 0011 0101.
Numbers going to and from the DS1305 must be converted. BCD conversion functions
as well as the basic transfer functions are in the DS1305.C include fi le.

 The following is a table of all the DS1305 registers.

 The basic transfer of data to the DS1305 uses similar code as in Chapters 5 and 8.
 The functions write_ds1305() and read_ds1305() in ds1305.c perform these functions.

To set the hour register (0x82) to 5 you can do this:
 write_ds1305(0x82, 5);
The ds1305.c driver also has functions like rtc_get_date() to get all the date values.

 Enter the code and save as EX10.c load and run the following program to demonstrate
the real time clock interface.

 Note that this program uses the debugger MONITOR window to communicate with the
user. This program allows you to set and read the clock. Be sure to set the correct time
before moving to the next chapter.

Embedded Serial Busses Exercise Book

#include <ESBProto.c>
#use rs232(debugger, xmit=PIN _ B5, rcv=PIN _ B5)

#include <stdlib.h>
#include <input.c>

#defi ne RTC _ SCLK PIN _ D0
#defi ne RTC _ IO PIN _ D1
#defi ne RTC _ RST PIN _ D6
#include <ds1305.c>

void main()
{
 int dow, day, month, year, hour, minute, second, oldsec;

 output _ high(PIN _ D2); //turn off displays
 rtc _ init();

 printf(“\r\nSet date and time? (y/n) “);
 if(kbhit())
 getc(); //clear read buffer
 if(getc() == ‘y’)
 {
 printf(“\r\nMonth: “);
 month = get _ int();
 printf(“\r\nDay: “);
 day = get _ int();
 printf(“\r\nYear: “);
 year = get _ int();
 printf(“\r\nDay of week (1=Sunday, 7=Saturday): “);
 dow = get _ int();
 printf(“\r\nHour: “);
 hour = get _ int();
 printf(“\r\nMinute: “);
 minute = get _ int();
 rtc _ set _ datetime(day, month, year, dow, hour, minute);
 }
 while(true)
 {
 rtc _ get _ time(hour, minute, second);
 if(second != oldsec)
 {
 rtc _ get _ date(day, month, year, dow);
 printf(“\r\n %u/%u/%02u [%u] %u:%02u:%02u”,
 month, day, year, dow, hour, minute, second);
 oldsec = second;
 }
 }
}

 Use the functions already developed to write a stand-alone program that
dispalys the time HHMM on the four LEDs. The program should update the
LEDs like a clock.

A

FURTHER STUDY

CCS, Inc.

11 I2C OVERVIEW

 The I2C bus is a simple two wire multi-drop serial protocol. The I2C concept was developed by Philips
for comunication with consumer electronics IC chips. The advantages over the previous serial bus
examples is that I2C does not require a third wire for device selection. All of the system devices can
share the same two wires. In I2C the two wires are identifi ed as SCL (clock) and SDA (data).

 Each device has a unique address. The standard I2C has a 7 bit address (1-127) and there is an
extended protocol that allows for a 10 bit address (1-1023). Some devices allow the designer to select
the address by grounding or pulling high address lines on the part. This allows a number of identical
parts to be on the same bus. For example a designer may put three 8K serial EEPROMs on the same
bus to get 24K. Each device will have a different address set in hardware.

 The bus operates in a master/slave mode where a master device controls the clock line and decides
what will happen on the bus. The protocol allows for multiple masters on the same bus and defi nes a
method for the masters to stay out of each other way.

 The protocol has defi ned two special conditions START and STOP that can be initiated on the bus.
A START condition looks like this:
 SDA
 SCL
 A STOP condition looks like this:
 SDA
 SCL
A normal data bit is transfered like this:
 SDA
 SCL
Shown is a transfer of 1, the SDA changes while the clock is low and the receiver grabs the data
when the clock transitions high. Note that for START and STOP the clock line is high while the SDA
transitions. This allows the slave to distinguish data from control.

 After a START the master will issue a slave address and one bit to indicate if the data transfer is from
slave to master or if it is from master to slave. These two items are packed into a 8 bit byte. The
direction is the LSB. After that, any number of data bytes are transferred and a STOP is issued. If
the data direction needs to change, the master issues another START (no STOP needed) and a new
address/direction byte.

 Each byte transferred over the bus has eight data bits and one ACK bit. The master issues the 9th
clock and the device receiving data (may be master or slave) will pull the data line low if the byte
was received. If the 9th bit is high, then the receiver is not acknowledging the data. There is no retry
defi ned. The master should issue a STOP and determine how to best proceed. Note that some
devices will withhold an ACK in order to stop transmission normally. For example, a serial EEPROM
device may keep sending bytes sequentially through memory until a byte is not ACKed.

 Some simple devices have a small number of predefi ned registers that are always read or written in
order. For example a master would write to these registers as follows:
 START
 WRITE address/0 (0 is a master write)
 WRITE register A
 WRITE register B
 WRITE register C
 STOP

Embedded Serial Busses Exercise Book

 And read like this:
 START
 WRITE address/1 (1 is a master read)
 READ register A
 READ register B
 READ register C
 STOP

 Other devices allow the registers to be addressed and the master must set the register address. For
example they write like:
 START
 WRITE device_address/0
 WRITE register_address
 WRITE register_value
 STOP
 And read like this:
 START
 WRITE device_address/0
 WRITE register_address
 START
 WRITE device_address/1
 READ register_value
 STOP

 To allow multiple writers on the BUS the I2C bus has external pull-up resistors on both SCL and SDA.
Devices on the bus either drive the pin low or allow it to float high.

 During data transfer a slave device can slow down the master device if the slave is not ready by
holding the clock line low. The master will detect that the clock did not float high and wait for the slave.
This is called clock stretching.

 The C compiler has built-in functions to control the bus. These functions require the following directive:
 #USE I2C(MASTER, SCL=PIN_B0, SDA=PIN_B1, FAST)
The last parameter sets the bus speed. The I2C standard defines two speeds FAST (400khz) and
SLOW (100khz).

 The following functions may be used after the above directive defined the bus:
 I2C_START()
 I2C_STOP()
 ack = I2C_WRITE()
 data = I2C_READ()

 Review the 2432 serial EEPROM data sheet and write a simple function to
write a given value to a given address in the serial EEPROM using the compiler
functions. Compare your function to the function in 2432.C.

A

FURTHER STUDY

CCS, Inc.

12
 The following program sets up an I2C bus with the PIC16F877A chip as the master, and the

temperature chips and serial EEPROM chips as slaves. Note that the temperature chip data sheet
shows the address as:
 1 0 0 1 A2 A1 A0 RW
Since the A0,A1,A2 pins are grounded the address is 0x90. Sometimes this address is expressed
as 0x48 (ignoring the RW bit). Make sure you understand how the address is given. The compiler
uses the 0x90 format (real address times 2). The serial EEPROM is address 0xA0.

 The program shows the temperature in the fi rst two digits and the serial EEPROM data in location
0 in the last two digits. The serial EEPROM data does not change. You can press your fi nger on
the temperature chip to change the temperature.

 Enter the following code in a fi le named EX12.c, load and run the program.

#include <ESBProto.c>
#use i2c(master, scl=PIN _ C3, sda=PIN _ C4)

void main()
{
 long int temp, display;
 int read _ data, temp _ high, temp _ low;

 i2c _ start();
 i2c _ write(0x90);
 i2c _ write(0xAC);
 i2c _ write(0x0C); //write confi g register
 i2c _ start();
 i2c _ write(0x90);
 i2c _ write(0x51); //start temperature conversions
 i2c _ stop();

 delay _ ms(750); //time before fi rst valid temperature reading

 while(true)
 {
 i2c _ start();
 i2c _ write(0x90);
 i2c _ write(0xAA);
 i2c _ start();
 i2c _ write(0x91);
 temp _ high = i2c _ read(1);
 temp _ low = i2c _ read(0);
 i2c _ stop();

 i2c _ start();
 i2c _ write(0xA0);
 i2c _ write(0x00);
 i2c _ start();
 i2c _ write(0xA1);
 read _ data = i2c _ read(0);
 i2c _ stop();

I2C MASTER

(continued...)

Embedded Serial Busses Exercise Book

 The above program sets the DS1631 chip to continuously update the temperature
registers. The data sheet describes another mode where the chip only reads the
temperature when commanded. This is used for low power applications. Redesign
the program to set the chip up in one-shot mode, start a conversion and read the
result each time through the loop.

A

FURTHER STUDY

 Note that you can pass a 0 to I2C_READ() if you do not want to ACK the byte. This is done with
the serial EEPROM to indicate the master is done receiving data

 The compiler comes with simple drivers for many chips including the DS1631 and 2408. The
following is a rewrite of the same program using the compiler drivers.

 //convert 12-bit celcius to 2-digit fahrenheit
 temp = ((long)temp _ high << 4) + (temp _ low >> 4);
 temp = temp * 9 / 5;
 display = (temp >> 4) + 32;
 display = display * 100 + read _ data;
 led _ display _ number(display);
 }
}

#include <ESBProto.c>

#defi ne DAL _ SDA PIN _ C4
#defi ne DAL _ SCL PIN _ C3
#include <ds1631.c>

#defi ne EEPROM _ SDA PIN _ C4
#defi ne EEPROM _ SCL PIN _ C3
#include <2408.c>

void main()
{
 long int display;
 int read _ data;

 init _ ext _ eeprom();
 init _ temp();

 delay _ ms(750); //time before fi rst valid temperature reading

 while(true)
 {
 display = read _ full _ temp();
 read _ data = read _ ext _ eeprom(0);
 display = display / 100 * 100 + read _ data;
 led _ display _ number(display);
 }
}

(continued...)

CCS, Inc.

13 I2C - MULTI MASTER

 The chapter 12 program had a single master on the I2C bus. To add another master, the code
needs to be modifi ed so each master checks to see if the bus is in use. This is done in the
compiler functions by looking at the I2C_WRITE() result. Normally this result is 0 (ACK) or 1
(NACK). In a multi-master mode it can also return a 2 if two masters attempt to use the bus at the
same time.

 The simple code to read location 0 from the serial EEPROM converts the following for
multi-master. Note that the C continue and break statements have been used to improve the
readability.

do {
 i2c _ start();
 if(i2c _ write(0xa0) !=0)
 continue;
 if(i2c _ write(0) !=0)
 continue;
 i2c _ start();
 if(i2c _ write(0xa1) !=0)
 continue;
 data=i2c _ read(0);
 i2c _ stop();
 break;
} while(TRUE);

 For these examples the compiler includes multi-master versions of some drivers. Use DS1631MM.C
and 2408MM.C for multi-master versions of the drivers.

 Modify the prgram from chapter 12 to use these multi-master drivers. Load the prgram onto the
PIC16F877A.

 Create the following program for the PIC16F876A chip. This program will increment the value in
location 0 of the serial EEPROM every time the button is pressed. Load and run the program on
the target board to demonstrate two masters on the I2C bus. The last two digits should increment
each time the button is pressed.

Embedded Serial Busses Exercise Book

 Modify the above PIC16F876A program to keep a count of how many times the I2C
bus access failed. Then modify the program to write to location 0 of the EEPROM
the value of the counter every 2 seconds. Hint: Incrementing the count will require
modifi cations to the driver fi le.

A

FURTHER STUDY

#include <16F876A.h>
#fuses HS,NOLVP,NOWDT,PUT
#use delay(clock = 20000000)
#use RS232(baud = 9600, xmit = PIN _ C6, rcv = PIN _ C7)

#defi ne EEPROM _ SDA PIN _ C4
#defi ne EEPROM _ SCL PIN _ C3
#include <2408mm.c>

void main()
{
 long int data;

 init _ ext _ eeprom();

 while(true)
 {
 while(input(PIN _ A4))
 data = read _ ext _ eeprom(0);

 while(!input(PIN _ A4));
 data = read _ ext _ eeprom(0);
 if(data >= 99)
 data = 0;
 else data++;
 write _ ext _ eeprom(0, data);
 }
}

CCS, Inc.

I2C - PIC SLAVE14
 The previous programs all use the PICs as bus masters. In this chapter we will design an I2C slave

program. It is always best to use interrupts to handle slave requests.

 The function I2C_ISR_STATE() determines why the I2C interrupt happened. It returns 0 when the
address byte is recieved. It returns a 1..127 when the master sends data bytes 1 to 127. It returns
128..255 when the master requests data bytes 1 to 127.

 Enter and load the following example slave program in the PIC16F876A chip.

#include <16F876A.h>
#fuses HS,NOLVP,NOWDT,PUT
#use delay(clock = 20000000)
#use i2c(slave, scl=PIN _ C3, sda=PIN _ C4, address=0x70)

#defi ne red _ led PIN _ A1
#defi ne yellow _ led PIN _ A2
#defi ne green _ led PIN _ A3

#int _ ssp
void ssp _ isr()
{
 char c;
 int state;

 state = i2c _ isr _ state();

 c = i2c _ read();

 if(state==1)
 if(c == ‘r’)
 output _ toggle(red _ led);
 else if(c == ‘y’)
 output _ toggle(yellow _ led);
 else if(c == ‘g’)
 output _ toggle(green _ led);
 }
}

void main()
{
 enable _ interrupts(int _ ssp);
 enable _ interrupts(global);
 while(true);
}

Embedded Serial Busses Exercise Book

 Write a slave program to return the value of the push button when the master
requests data. Program the master to read the slave push button value and display
it in the LEDs.

A

FURTHER STUDY

#include <ESBProto.c>
#use i2c(master, scl=PIN _ C3, sda=PIN _ C4)

void main()
{
 char c;

 output _ high(PIN _ D2); //turn off displays

 while(true)
 {
 printf(“\r\nPick a color (r,y,g): “);
 do
 {
 c = getc();
 putc(c);
 }while(!(c == ‘r’ || c == ‘y’ || c == ‘g’));

 i2c _ start();
 i2c _ write(0x70);
 i2c _ write(c);
 i2c _ stop();
 }
}

 Enter and load the following example program into the PIC16F877A chip.

CCS, Inc.

15 ASYNCHRONOUS SERIAL BUS

 The prior programs all have a clock to indicate when the data is to be sampled. This is referred
to as synchronous communication. Asynchronous communication only sends data and relies on
the receiver to reconstruct the clock. This is done by the receiver starting a bit timer when a byte
starts. For this to work the fi rst bit must always be opposite the idle state. A start bit is inserted
for this purpose. To help ensure proper transmission a stop bit of the opposite polarity of the start
bit is inserted at the end. For this to work, each bit must be a fi xed time and both receiver and
transmitter must know that time. For example to send a 0x12 byte when the idle state of the bus is
a 1 the following is sent:
 0 0 1 0 0 1 0 0 0 1
Notice the data is sent LSB fi rst. In all it takes 10 bit times to send one byte.

 The compiler has a set of built-in functions brought in with #USE RS232 for asynchronous
communication. The baud= option specifi es how many bits are sent per second. The bit stream,
as specifi ed above, is a start bit (always 0), Eight data bits (lsb fi rst) and a stop bit (always 1). The
line then remains at the 1 level. The number of bits may be changed with a bits= option and a
parity bit can be added before the stop bit with a parity= option. The following diagram shows a
single character A (01000001) as sent at 9600 baud. The eight data bits are between the dotted
lines. Each bit is 104us.

 The basic functions for RS-232 are putc() and getc().

 getc() will cause the program to stop and wait for a character to come in before it returns.

 printf calls putc() repeatedly to output a whole string and format numbers if requested. The % in
the printf indicates another parameter is included in the printf call and it should be formatted as
requested. %lu indicates to format as an unsigned long.

Embedded Serial Busses Exercise Book

#include <ESBProto.c>
#use rs232(baud=9600, xmit=PIN _ C6, rcv=PIN _ C7)

void main()
{
 output _ high(PIN _ D2); //turn off displays

 printf(“\r\nprintf sends serial data to STDOUT\r\n”);
 while(true)
 putc(getc());
}

 When a level converter is used to convert the microprocessor 0-5V output to a +/- voltage then the
asynchronous communication is RS-232 compliant. At the RS232 voltages the signal can travel
farther. RS232 ports are on many computers. A MAX232 level converter is on each of the PICs
on the protoboard.

 The following is a simple RS232 program and a hookup diagram.

 Asyncronous communication has the advantage of only needing one wire for each receiver/
transmitter pair. The examples in this chapter show how a simple two wire asyncronous
communication path can be set up between microprocessors.

 We will use the PIC16F876A chip as a math co-processor. This chip will perform fl oating point
math functions that require ample ROM. This way the main program in the PIC16F877A chip does
not need to waist space for the fl oating point library.

 The PIC16F877A chip will send a request to the 876A chip over the serial interface. The
PIC16F876A chip will send the result back over the serial interface.

#include <ESBProto.c>
#use rs232(stream=out, baud=9600, xmit=PIN _ C6, rcv=PIN _ C7)
#use rs232(stream=chip, baud=9600, xmit=PIN _ B0, rcv=PIN _ B2)
#include <stdlib.h>
#include <input.c>

void fl op(byte *a, char op, byte *b, byte *result)
{
 int i;
 for(i=0;i<4;i++)
 fputc(a[i], chip); //send four bytes for fl oat
 fputc(op, chip);
 for(i=0;i<4;i++)
 fputc(b[i], chip);
 for(i=0;i<4;i++)
 result[i]=fgetc(chip);
}

void main()
{
 fl oat a, b, result;
 char op;

 output _ high(PIN _ D2); //turn off displays
 delay _ ms(10); //ignore noise and synchronize

 while(true)
 {
 fprintf(out, “\r\n\r\nEnter fi rst number: “);
 a = get _ fl oat();
 fprintf(out, “\r\nEnter operator (+-*/): “);
 op = fgetc(out);
 fputc(op, out);
 fprintf(out, “\r\nEnter second number: “);
 b = get _ fl oat();

 fl op(&a, op, &b, &result);
 fprintf(out, “\r\nResult is: %12f”, result);
 }
}

CCS, Inc.

MATH CO-PROCESSOR16

#include <16F876A.h>
#fuses HS,NOLVP,NOWDT,PUT
#use delay(clock = 20000000)
#use rs232(stream=chip, baud=9600, xmit=PIN _ B0, rcv=PIN _ B2)
#use rs232(stream=out, baud=9600, xmit=PIN _ C6, rcv=PIN _ C7)
#include <stdlib.h>
#include <input.c>

void get4(byte *data)
{
 int i;
 for(i=0;i<4;i++)
 data[i] = fgetc(chip);
}

void put4(byte *data)
{
 int i;
 for(i=0;i<4;i++)
 fputc(data[i],chip);
}

void main()
{
 fl oat a, b, result;
 char op;

 delay _ ms(9); //ignore noise and synchronize

 while(true)
 {
 get4(&a);
 op = fgetc(chip);
 get4(&b);
 switch(op)
 {
 case ‘+’:
 result = a + b;
 break;
 case ‘-’:
 result = a - b;
 break;
 case ‘*’:
 result = a * b;
 break;
 case ‘/’:
 result = a / b;
 break;
 default:
 result = 99;
 break;
 }
 put4(&result);
 }
}

Embedded Serial Busses Exercise Book

 The embedded busses prototyping board has a piezo speaker on it. Using the pulse width
modulation module built into the PIC16F876A the following code will sound a tone at 1.22khz for
one second.

setup _ ccp1(CCP _ PWM);

setup _ timer _ 2(T2 _ DIV _ BY _ 16, 255, 1);

set _ pwm1 _ duty(127);

delay _ ms(1000);

setup _ timer _ 2(T2 _ DISABLED, 0, 1);

 There is a potentiometer on the PIC16F877A node that can be read as follows. Add the directive
#device adc=10 at the top of your code. Expect a range of 0 (far left) to 1023 (far right).

long int a;

setup _ adc _ ports(AN0);

setup _ adc(ADC _ CLOCK _ INTERNAL);

set _ adc _ channel(0);

while(TRUE) {

 a=read _ adc();

 led _ display _ number(a);

}

 The 9V input power is divided down and fed to an A/D pin. This may be used to measure the input
voltage to the card and even know the AC wall voltage since the wall transformer divides down the
wall voltage by a factor of approximately 11.

 Write a program to display the wall voltage on the LEDs.

CCS, Inc.

17 ADDITIONAL PROJECTS

Part A - Piezo Speaker

Part B - Analog to Digital Converter

Embedded Serial Busses Exercise Book

 The PIC16F877A node has two pushbuttons that can be read.

 Modify the stand-alone clock program to allow the clock time to be set by the two pushbuttons
(fast advance and slow advance).

 Add an alarm clock feature. Set the alarm time with the potentiometer. When the potentiometer
moves, display the alarm time until the potentiometer stops moving for 5 seconds. To make it
easy to set, change the time in 15 min increments. Sound the piezo buzzer until a pushbutton is
depressed.

 Modify the EX_TONES.C program to play happy birthday through the piezo speaker.

 Design two programs (node A & B) to access a location in the external EEPROM as fast as possible.
The A node program should record the number of collisions and display the data on the LED. The
RED LED should light if the data is read wrong. This would indicate a undetected collision.

 Modify the example 14 programs to increase the baud rate to see how fast you can go.

Part D - Happy Birthday

Part E - EEPROM Access

Part C - Clock

Part F - Baud Rate Speed

This booklet is not intended to be a tutorial for the C programming language. It does attempt
to cover the basic use and operation of the development tools. There are some helpful tips
and techniques covered, however, this is far from complete instruction on C programming.
For the reader not using this as a part of a class and without prior C experience the following
references should help.

Exercise
PICmicro® MCU C: An introduction to
Programming the Microchip PIC® in

CCS by Nigel Gardner

The C Programming Language by
Brian W. Kernighan and

Dennis M. Ritchie (2nd ed.)
3 1.1 The structure of C Programs

1.2 Components of a C Program
1.3 main()
1.5 #include
1.8 constants
1.11 Macros
1.13 Hardware Compatibility
5.5 While loop
9.1 Inputs and Outputs

1.1 Getting Started
1.4 Symbolic Constants
3.1 Statements and Blockx
3.5 Loops
1.11 The C Preprocessor

4 1.7 Variables
1.10 Functions
2.1 Data Types
2.2 Variable Declaration
2.3 Variable Assignment
2.4 Enumeration
3.1 Functions
3.4 Using Function Arguments
4.2 Relational Operators
5.7 Nesting Program Control Statements
5.10 Switch Statement

1.2 Variables and Arithmetic Expr
2.1 Variable Names
2.2 Data Types and Sizes
2.3 Constants
2.4 Declarations
2.6 Relational and Logical Operators
3.4 Switch
1.7 Functions
1.8 Arguments
4.1 Basics of Functions

5 4.3 Logical Operators
4.4 Bitwise Operators
4.5 Increment and Decrement
5.1 if Statements
5.2 if-else Statements
9.3 Advanced BIT Manipulation

3.2 if-Else
2.8 Increment and Decrement Ops
2.90 Bitwise Operators

6 4.1 Arithmetic Operators 2.5 Arithmetic Operators

7 9.5 A/D Conversion 3.3 Else

References

8 5.4 For Loop
6.1 One-Dimensional Arrays

1.3 The For Statement
1.6 Arrays
2.10 Assignments Operators and Exp

10
1.6 printf Function
9.6 Data Comms/RS-232

1.5 Character Input and Output
2.6 Loops-Do-While
7.1 Standard Input and Output
7.2 Formatted Output - printf

11 6.2 Strings
6.4 Initializing Arrays
8.1 Introduction to Structures

7.9 Character Arrays
6.1 Basics of Structures
6.3 Arrays of Structures

13 9.4 Timers

14 2.6 Type Conversion
9.11 Interrupts

2.7 Type Conversions

16 9.8 SPI Communications
17 9.7 I2C Communications

18 5.2 ? Operator 2.11 Conditional Expressions
19 4.6 Precedence of Operators 2.12 Precedence and Order Eval

Comprehensive list of PICmicro®
Development tools and information

www.mcuspace.com

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

On The Web

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small debug
program in the chip. This is a basic debug tool that takes up some of the chip’s resources (I/O
pins and memory). An emulator replaces the chip with a special connector that connects to a unit
that emulates the chip. The debugging works in a simulator manner except that the chip has all of
its normal resources, the debugger runs faster and there are more debug features. For example
an emulator typically will allow any number of breakpoints. Some of the emulators can break on
an external event like some signal on the target board changing. Some emulators can break on
an external event like some that were executed before a breakpoint was reached. Emulators cost
between $500 and $3000 depending on the chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand alone
device programmer may be used to program all the chips. These programmers will use the .HEX
file output from the compiler to do the programming. Many standard EEPROM programmers do
know how to program the Microchip parts. There are a large number of Microchip only device
programmers in the $100-$200 price range. Note that some chips can be programmed once
(OTP) and some parts need to be erased under a UV light before they can be re-programmed
(Windowed). CCS offers the Mach X which is a stand-alone programmer and can be used as an
in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources. Some
have an ICD interface and others simply have a socket for a chip that is externally programmed.
Some boards have some advanced functionality on the board to help design complex software.
For example, CCS has a Prototyping board with a full 56K modem on board and a TCP/IP stack
chip ready to run internet applications such as an e-mail sending program or a mini web server.
Another Prototyping board from CCS has a USB interface chip, making it easy to start developing
USB application programs.

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip. A
simulator offers all the normal debug capability such as single stepping and looking at variables,
however there is no interaction with real hardware. This works well if you want to test a math
function but not so good if you want to test an interface to another chip. With the availability of low
cost tools, such as the ICD in this kit, there is less interest in simulators. Microchip offers a free
simulator that can be downloaded from their web site. Some other vendors offer simulators as a
part of their development packages.

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
 · Specify operational settings at the execution level
 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface
 · Simply point, click and program
 · Additions to HEX file organization include associating comments or a graphic image
 to a file to better ensure proper file selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics
 · Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specific driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a file list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™
 · All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help file for additional assistance.

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

�� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �� �

�������
�����

�����
�������
������

������

���
��
��
��

��
�������

���
��
��
��

������� ������
������

��

���������

����������

�����
�����

�����
���������

�����
�����

�����
���������

