
Development Kit
For the PIC® MCU

Exercise Book

Embedded Internet
March 2010

PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

Copyright © 2010 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.

CCS, Inc.

1 UNPACKING AND INSTALLATION

Inventory
 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must

have a spare 9-Pin Serial or USB port, a CD-ROM drive and 75 MB of disk space.

 The diagram on the following page shows each component in the Embedded Internet Kit.
Ensure every item is present.

Software
 Insert the CD into the computer and wait for the installation program to start. If your computer

is not set up to auto-run CDs, then select My Computer and double-click on the CD drive.

 Click on Install and use the default settings for all subsequent prompts by clicking
NEXT, OK, CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will have
created an empty directory c:\program fi les\picc\projects that may be used for this purpose.

 Select the compiler icon on the desktop. In the PCW IDE, click Help>About and verify
a version number is shown for the IDE and PCM to ensure the software was installed
properly. Exit the software.

Hardware
 Connect the PC to the ICD(6) using the USB cable.(1) Connect the prototyping board (9) to

the ICD using the modular cable. Plug in the DC adaptor (8) to the power socket and plug
it into the prototyping board (9). The fi rst time the ICD-U is connected to the PC, Windows
will detect new hardware. Install the USB driver from the CD or website using the new
hardware wizard. The driver needs to be installed properly before the device can be used.

 The LED should be red(2) on the ICD-U to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the desktop.
Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LED should be
illuminated green. If any errors are detected, go to Diagnostic tab. If all tests pass, the
hardware is installed properly.

 Disconnect the hardware until you are ready for Chapter 3. Always disconnect the power
to the Prototyping board before connecting/disconnecting the ICD or changing the
jumper wires to the Prototyping board.

(1) ICS-S40 can also be used in place of ICD-U. Connect it to an available serial port on the PC using the 9
pin serial cable. There is no driver required for S40.
(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

Embedded Internet Exercise Book

1

1 Storage box
2 Exercise booklet
3 CD-ROM of C compiler (optional)
4 Serial PC to Prototyping board cable
5 Modular ICD to Prototyping board cable
6 ICD unit for programming and debugging

 7 USB (or Serial) PC to ICD cable
 8 AC Adaptor (9VDC)

9 Embedded Internet Prototyping Board with LCD Display
 (See inside front and back cover for details on the board layout and schematic)

ICD-U64

CCS, Inc.

2 USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: c:\program fi les\picc\examples\ex_
stwt.c

 Scroll down to the bottom of this fi le. Notice the editor shows comments, preprocessor
directives and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a Help fi le
description for set_timer0 appears. The cursor may be placed on any keyword or built-in
function and F1 will fi nd help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various standard
cut, paste and copy functions.

 Review the editor option settings by clicking on Options>Editor Properties. The
IDE allows selection of the tab size, editor colors, fonts, and many more. Click on
Options>Toolbar to select which icons appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different

compilers for each family of Microchip parts. All the exercises in this booklet are for the
PIC18F6722 chip, a 14-bit opcode part. Make sure PCM 14 bit is selected in the
drop-down box under the Compiler tab.

 The main program compiled is always shown in the bottom of the IDE. If this is not the
fi le you want to compile, then click on the tab of the fi le you want to compile. Right click
into editor and select Make fi le project.

 Click Options>Project Options>Include Files… and review the list of directories
the compiler uses to search for included fi les. The install program should have put two
directories in this list: devices and drivers.

 Normally the fi le formats need not be changed and global defi nes are not used in these
exercises. To review these settings, click Options>Project Options>Output Files and
Options>Project Options>Global Defi nes.

 Click the compile icon to compile. Notice the compilation box shows the fi les created
and the amount of ROM and RAM used by this program. Press any key to remove the
compilation box.

Embedded Internet Exercise Book

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the microcontroller

is used. Identifiers that start with @ are compiler generated variables. Notice some
locations are used by more than one item. This is because those variables are not
active at the same time.

 Click Compile>C/ASM List. This file shows the original C code and the assembly
code generated for the C. Scroll down to the line:
 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal.
The second instruction moves W into memory. Switch to the Symbol Map to find the
memory location where int_count is located.

 Click View>Data Sheet, then View. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files and Projects are created,
opened, or closed using this menu.

Place cursor here for slide out boxes.
All of the current project’s source and
output files can be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using
this menu.

Compiles current selected unit, does NOT link/build
into a HEX file.

Quick view of supported devices.

Compiles all units that have changed since last build,
links/builds into a HEX file.

Compiles all units regardless if they have changed since
last build, links/builds into a HEX file.

CCS, Inc.

 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>New>Source File and enter the fi lename EX3.C

 Type in the following program and Compile.

3 COMPILING AND
RUNNING A PROGRAM

#include <18f6722.h>
#device ICD=TRUE
#fuses H4,NOLVP,NOWDT
#use delay (clock=40000000)

#defi ne GREEN_LED PIN_B2

void main () {
 while (TRUE) {
 output_low (GREEN_LED);
 delay_ms (1000);
 output_high (GREEN_LED);
 delay_ms (1000);
 }
}

N
O

T
E

S

 The fi rst four lines of this program defi ne the basic hardware
environment. The chip being used is the PIC18F6722, running at 40MHz with the ICD
debugger.

 The #defi ne is used to enhance readability by referring to
GREEN_LED in the program instead of PIN_A2.

 The “while (TRUE)” is a simple way to create a loop that never stops.

 Note that the “output_low” turns the LED on because the other end of the LED is +5V.
This is done because the chip can tolerate more
current when a pin is low than when it is high.

 The “delay_ms(1000)” is a one second delay (1000 milliseconds).

 Do not add device ICD=TRUE if you are going to generate a stand-alone
program that does ot need an ICD for debuging.

Embedded Internet Exercise Book

 Connect the ICD to the Prototyping board using the modular cable, and connect the ICD to
the PC. Power up the Prototyping board.

 Click Debug>Enable Debugger and wait for the program to load.

 If you are using the ICD-U40 and the debugger cannot communicate to the ICD unit go
to the debug configure tab and make sure ICD-USB from the list box is selected.

 Click the green go icon:

 Expect the debugger window status block to turn yellow indicating the program is
running.

 The green LED on the Prototyping board should be flashing. One second on and one
second off.

 The program can be stopped by clicking on the stop icon:

 Modify the program to light the green LED for 5 seconds, then the yellow for
1 second and the red for 5 seconds.

 Add to the program a #define macro called “delay_seconds” so the
delay_ms(1000) can be replaced with : delay_seconds(1); and
delay_ms(5000) can be: delay_seconds(5);.

Note: Name these new programs EX3A.c and EX3B.c and follow the same
 naming convention throughout this booklet.

A

B

FURTHER STUDY

ICD-U64

CCS, Inc.

 TCP/IP is the foundation on which many networks, such as the Internet, operate.
However, TCP/IP is not just one protocol, but a combination of several protocols stacked
on top of each other. Just by the name TCP/IP, it is inferred that there is a TCP protocol
that operates on top of the IP protocol. Below is an example of a stack of protocols that
make up HTTP (HTTP is the protocol used to send and receive web pages) over an
Ethernet network connection or a modem network connection:

4 NETWORKING OVERVIEW

 The physical link defi nes the physical connection and properties that connect to a
network. Common properties are cable type, pin-outs, data rates, max distances, and so
on. In Ethernet networks the physical network is the twisted pair cabling. When using a
modem to dial an Internet Service Provider (ISP), the physical link is phone line.

 The data link defi nes the protocol used to maintain the physical link, which may include:
data framing, checksum/CRC, and collision detection. The data link layer is divided
into two parts, media access control (MAC) and link layer control (LLC). MAC controls
access and encodes signals to a valid format. LLC creates a link to the network via low
level link negotiation.

 The network layer provides address and routing information for the packet. The network
protocol primarily used on the Internet is IP. Addresses are provided in IP via a 4 byte
denomination, for example 192.168.100.1. IP can route incoming and outgoing packets
by inspecting the IP address in the protocol and determine the best route for such
packets. Another network layer often seen in Ethernet is ARP, which is used to resolve
MAC addresses with IP address.

 The transport and session are actually separate layers, but for simplicity, shall be
combined in this tutorial. The transport layer provides for error checking, error recovery
and data fl ow control. The session layer provides a method for creating a communication
session between two points, and may include security and authentication.

Stack Component Ethernet Modem
Application HTTP HTTP
Transport & Session TCP TCP
Network IP IP
Data Link Ethernet PPP
Physical Link 10Base-T Phone Line

Embedded Internet Exercise Book

 The application layer employs user defined data and protocols. In the case of the web,
asking for and transmitting web pages are done through a protocol called HTTP, which
sits in the application layer. Other protocols, such as TELNET and FTP, also sit in the
application layer.

 As a packet progresses through the a network, such as the Internet, all machines
involved in the routing from point A to point B may change the contents of the link layer
and network layer as needed. For example, a PC may be connected to the Internet via
a modem with a PPP connection, and therefore, all packets originating from that PC will
use PPP for the link layer. However, not all machines are connected to the Internet using
PPP, so as a packet is sent through the network each unit will use their own link layer
protocol.

 Over the next few chapters of this tutorial, these layers and how to implement them in
firmware will be discussed.

 A great way to learn to TCP/IP, and the underlying foundation of all layers involved, is to
use a packet sniffer. A packet sniffer can inspect packets as they enter and leave a PC.
A free, open-source, packet sniffer in software is available called Ethereal, and can be
downloaded at http://www.ethereal.com/. Below is a screen-shot of Ethereal inspecting
an ARP packet on Ethernet:

CCS, Inc.

COOPERATIVE MULTITASKING5
 When implementing TCP/IP and other networking protocols, portions of the code will

require waiting for a connection, response, or acknowledge. Often there are many
network requests that need to be handled; sitting in a infi nite loop waiting for a response
may not be acceptable. For this reason, a multitasking scheme must be employed when
implementing a TCP/IP stack on the PIC. The easiest multitasking scheme to implement
on a microcontroller, such as a Microchip PIC MCU, is a cooperative multitasking
scheme.

 Cooperative multitasking is where processes must give control back to other processes.
It is called cooperative because all tasks and processes must cooperate and give back
control for other processes.

 The following is an example program that is not cooperative:

void blink _ leds(void);
void handle_input(void);

 void main(void) {
 while(TRUE) {
 blink_led();
 handle_input();
 }
 }

 void blink_led(void) {
 output_low(PIN_LED);
 delay_ms(1000);
 output_high(PIN_LED);
 delay_ms(1000);
 }

 void handle_input(void) {
 //get input from user and act upon it
 }

 blink_leds() is not a routine that is compatible with cooperative multitasking schemes
because it will take over the microcontroller for two seconds. During that two seconds,
other tasks are not running, including the function handle_input(). If a button is pressed
in the middle of the blink_leds() routine, it may take up to two seconds before seeing the
microcontroller act upon that input.

Embedded Internet Exercise Book

 The following is a replacement for blink_leds() that is cooperative multitasking friendly:

 void blink _ led _ task(void) {
 static enum {LED_TASK_TOGGLE, LED_TASK_WAIT} state=LED_TASK_TOGGLE;
 static TICKTYPE last_counter;

 switch(state) {
 case LED_TASK_TOGGLE:
 output_toggle(PIN_LED);
 state=LED_TASK_WAIT;
 last_counter=TickGet();
 break;

 case LED_TASK_WAIT:
 if (TickGetDiff(TickGet(), last_counter) > TICKS_PER_SECOND) {
 state= LED_TASK_TOGGLE;
 }
 break;
 }
 }

 Unlike blink_leds(), blink_leds_task() has no delay() routines, so it operates very fast. Since
it operates fast, it is cooperative with other tasks in the system. Updating
blink_leds() to blink_leds_task() does involve more overhead, as more RAM is needed to
save the previous state of the task and more code space is needed to continue from the
previous state of the task. Note that other tasks in the program, such as handle_input() in the
example, have to be cooperative also.

 TICKTYPE, TickGet() and TickGetDiff() are part of the timing system. TICKTYPE is a
typedef to define the datatype used for the counter. TickGet() gets the current timing value;
the current timing value is automatically incremented by the timer task or the timer interrupt.
The timing value increments in such a way that the number of ticks per second is defined by
the TICKS_PER_SECOND constant. TickGetDiff() finds the difference between two counter
values, in order to find if a certain interval of time has happened. This nomenclature was
used for this example because this is the timing system that Microchip has employed for their
TCP/IP stack.

CCS, Inc.

 The TCP/IP stack used in this tutorial is a modifi ed version of Microchip’s TCP/IP stack.
CCS made modifi cations in porting the stack to compile under the CCS C Compiler PCH,
and also added PPP as a possible physical/link layer. Despite these modifi cations the
API remains relatively unchanged, and Microchip provides a documentation of the API in
application note AN833.

 The heart of the Microchip TCP/IP stack is the function StackTask(). StackTask() is a
cooperative multitasking friendly routine that handles all the tasks for the stack including:
Ethernet, PPP, IP, ARP, UDP, timing engine, and so forth.

 When StackTask() is called in the main loop, StackTask() will process all components of
the stack and get the stack ready for the next interation of the user code. For example,
if there is a new TCP packet in the Ethernet receive buffer, StackTask() will process the
Ethernet, IP and TCP task which will result in TCPIsGetReady() returning TRUE. In the
user task, inspect the TCPIsGetReady() after each StackTask() to determine if there is
any action that needs to be taken with the received data. The next time StackTask() is
called, all remaining data in the receive buffer is discarded and the next set of data in the
receive buffer is processed.

6 THE MICROCHIP
TCP/IP STACK OVERVIEW

Embedded Internet Exercise Book

CCS, Inc.

 This chapter will start to look at the TCP/IP API. In particular, the Ethernet layer will be
reviewed. In general, it is not necessary to know the underlying foundation of a TCP/IP
network. To skip the internals of TCP/IP, Chapter 13 outlines how to begin creating an
application.

 Not every node connected to a network or the Internet is connected using Ethernet.
However, it is the physical layer of most home and offi ce local area networks (LAN); and
this tutorial will focus on that aspect.

 The Ethernet packet is formatted as follows:

7 ETHERNET LAYER

 The Source and Destination address is the 6 byte Media Access Control (MAC) address,
and each device is given a unique address. The fi rst three bytes of the MAC address are
the hardware vendor of the device, the second three bytes of the MAC address are often
the unit’s serial number.

 The type fi eld is used in two ways. If the value of type is greater than 1500 bytes, the
packet is an Ethernet 2 frame and type fi eld represents the protocol ID of the data. The
two protocols used in this book will be IP (0x0800) and ARP (0x0806). If the value
of type is less than 1500 bytes, then the packet is an IEEE 802.3 frame and type fi eld
represents the length of the data.

 Data is the data being sent by the Ethernet packet, and can represent many types of
packets. The only types of packets that we will care about will be ARP and IP packets.
The minimum length of an Ethernet frame is commonly 64 bytes, therefore, if there is
less than 64 bytes of data, the data fi eld will be padded with invalid bytes.

 The CRC fi eld is used by the link layer to determine if there is an error in the packet, and
the link layer will use this to automatically discard packets that are not valid. The CRC
will be generated by the TCP/IP stack, and often the CRC is automatically generated by
the network interface card (NIC).

0 1 2 3 4 5 6 7

0 Destination
Address

Source
Address

8 Source
Address (cont)

Type Payload

n
m

Payload
(cont)

m+1 CRC

Embedded Internet Exercise Book

 The NIC used in the CCS Embedded Internet development kit is Realtek’s RTL8019AS.
The RTL8019AS is a full-duplex, 10Mb/s Ethernet NIC with 16K of RAM to buffer
incoming and outgoing Ethernet packets. The 16K of RAM is confi gured into 16 1K
pages, so 15 pages are used for the receive buffer and 1 page is used for the transmit
buffer. Since the 16K of RAM is divided into 16 1K pages, the maximum transmission
unit (MTU) is 1K (1024 bytes).

 All NIC related code in the Microchip TCP/IP stack is located in MAC.C and MAC.H.
Although the TCP/IP stack will handle the MAC layer automatically, here is an example
showing how to receive Ethernet packets using the MAC code.

 Enter the following example code and save as ex7a.c.

#include <18F6722.h>
#use delay(clock=40000000)
#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7)
#fuses H4, NOWDT, NOLVP, NODEBUG
#defi ne STACK_USE_CCS_PICNET TRUE

#defi ne STACK_USE_MAC TRUE //use the nic card

#include “drivers\stacktsk.c” //include Microchip stack

void MACDisplayHeader(MAC_ADDR *mac, int8 type) {
 int8 i;
 printf(“\r\nMAC: “);
 for (i=0;i<6;i++) {
 printf(“%X”, mac->v[i]);
 if (i!=5)
 putc(‘:’);
 }
 printf(“ PROT:0x08%X “,type);
 if (type==MAC_IP)
 printf(“[IP]”);
 else if (type==MAC_ARP)
 printf(“[ARP]”);
}

(continued...)

CCS, Inc.

7 ETHERNET LAYER - CONT.

(continued...)

void main(void) {
 MAC_ADDR mac;
 int8 type;

 printf(“\r\n\nCCS TCP/IP TUTORIAL\r\n”);

 MACInit();

 while(TRUE) {
 if (MACGetHeader(&mac, &type)) {
 if (type!=MAC_UNKNOWN) {
 MACDisplayHeader(&mac, type);
 }
 ();
 }
 }
}

 Compile and run on the prototyping board.

 Inspect the output on a serial terminal program. The messages should appear as follows:

 CCS TCP/IP TUTORIAL
 MAC: 00:0B:6A:B4:31:8C PROT:0x0800 [IP]
 MAC: 00:D0:59:7F:23:A8 PROT:0x0800 [IP]
 MAC: 00:09:5B:E1:30:E2 PROT:0x0800 [IP]
 MAC: 00:C0:B6:02:92:BD PROT:0x0800 [IP]
 MAC: 00:03:6D:1D:53:9A PROT:0x0806 [ARP]
 MAC: 00:C0:B6:02:E2:CA PROT:0x0800 [IP]

 The MAC displayed is the source MAC address of the unit sending the Ethernet packet.
PROT is the protocol fi eld of the Ethernet header, and it is fi ltered by Microchip’s TCP/
IP stack to only allow IP and ARP packets. The NIC automatically fi lters out Ethernet
packets that are not destined to the unit, and so it can be assumed that the Ethernet
packet either had the Destination MAC address or the Ethernet packet was a broadcast
packet. Broadcast packets are made with a MAC address of FF:FF:FF:FF:FF:FF

Embedded Internet Exercise Book

N
O

T
E

S
 MACInit() initializes the RTL8019AS, which includes setting the MAC address

and initializing buffers.

 MACGetHeader(*MAC, *prot) checks the NIC’s receive buffers. If there is data
in the receive buffer, MACGetHeader will return TRUE and update the pointer
MAC and prot. Prot will also return if it’s an IP, ARP or unknown packet. Un-
known packets should be thrown away.

 When using the full TCP/IP stack provided by Microchip, MACGetHeader() is
called automatically by StackTask() to process any incoming IP and ARP
packets. Microchip’s TCP/IP stack clears the NIC receive buffer after each
StackTask(). Therefore, after each StackTask(), any incoming messages within
one task must be processed or the data will be lost.

 After MACGetHeader() returns TRUE, use the routines MACGet() and
MACGetArray() to read the data fi eld. See AN833 for documentation. In the
next chapter MACGet() and MACGetArray() will be used.

 MACDiscardRX() frees the currently used receive buffer, making it ready to
receive more data. Normally this routine will automatically be called by Stack-
Task() when needed.

 The data in the Ethernet header, and all other TCP/UDP/IP headers, are
stored big endian (most signifi cant byte fi rst). The Microchip PICmicro and
CCS C Compiler store data in a little endian format (least signifi cant byte fi rst).
Therefore, any data in headers, such as the type fi eld in the Ethernet header,
needs to be converted from big endian format to little endian format.

 Copy the fi rst nine lines of ex7a.c into a new fi le called “ccstcpip.h”. This header fi le will
be used in the next few examples.

CCS, Inc.

7 ETHERNET LAYER - CONT.

 The following example shows how to use the MAC code to send Ethernet packets.

 Enter the following code into ccstcpip.h and save.

#defi ne BUTTON1_PRESSED() (!input(PIN_B0))
#defi ne BUTTON2_PRESSED() (!input(PIN_B1))

#defi ne USER_LED1 PIN_B2
#defi ne USER_LED2 PIN_B4
#defi ne LED_ON output_low
#defi ne LED_OFF output_high

void MACAddrInit(void) {
 MY_MAC_BYTE1=1;
 MY_MAC_BYTE2=2;
 MY_MAC_BYTE3=3;
 MY_MAC_BYTE4=4;
 MY_MAC_BYTE5=5;
 MY_MAC_BYTE6=6;
}

char ExampleIPDatagram[] = {
 0x45, 0x00, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00,
 0x64, 0x11, 0x2A, 0x9D, 0x0A, 0x0B, 0x0C, 0x0D,
 0x0A, 0x0B, 0x0C, 0x0E
};

char ExampleUDPPacket[] = {
 0x04, 0x00, 0x04, 0x01, 0x00, 0x04, 0x00, 0x00,
 0x01, 0x02, 0x03, 0x04
};

Embedded Internet Exercise Book

 Now create ex7b.c with the following code.

#include “ccstcpip.h”

void main(void) {
 MAC_ADDR mac_dest;

 set_tris_b(0);

 MACAddrInit();

 MACInit();

 mac_dest.v[0]=0xFF;
 mac_dest.v[1]=0xFF;
 mac_dest.v[2]=0xFF;
 mac_dest.v[3]=0xFF;
 mac_dest.v[4]=0xFF;
 mac_dest.v[5]=0xFF;

 while(TRUE) {
 if (MACIsTxReady()) {
 MACPutHeader(
 &mac_dest, ETHER_IP,
 sizeof(ExampleIPDatagram) + sizeof(ExampleUDPPacket)
);
 MACPutArray(ExampleIPDatagram, sizeof(ExampleIPDatagram));
 MACPutArray(ExampleUDPPacket, sizeof(ExampleUDPPacket));
 MACFlush();

 output_toggle(USER_LED2);
 delay_ms(1000);
 }
 }
}

 Compile and run on the prototyping board.

CCS, Inc.

7 ETHERNET LAYER - CONT.

 An Ethernet packet with 32 bytes of data is sent every second in this code. To prevent
malformed packets from interrupting the network, the data being sent is actually a valid
IP datagram holding a valid UDP packet. IP and UDP will be discussed in upcoming
chapters. Examining network traffi c in Ethereal returns the following results:

 While examining the traffi c on a network using Ethereal, there may be a lot more traffi c
that is not from this example. Because of this, fi lter out all other traffi c that is not from
MAC address 01:02:03:04:05:06. This is the MAC address CCS has assigned the NIC,
so only these examples will be using it.

Embedded Internet Exercise Book

N
O

T
E

S
 Since the destination MAC address sent was FF:FF:FF:FF:FF:FF, this packet is

broadcast to the entire LAN.

 MY_MAC_BYTE1 to MY_MAC_BYTE6 are macros to the stacks method of
assigning a unit’s MAC address. They have to be set before MACInit() is called.
Each unit should have a unique MAC address.

 MACPutHeader(*MAC, type, size) puts the 14 byte Ethernet header to the NIC’s
transmit buffer, where MAC is the destination address. The source address is
always the unit’s address. Size is the number of bytes that make up the data
fi eld of this Ethernet packet.

 MACPutArray(*array, size) puts the specifi ed data into the NIC’s transmit buffer.
Call MACPutArray() once to stuff the IP datagram, and then call MACPutArray()
again to stuff the UDP datagram. This is similar to what the TCP/IP stack will do
when it has to stack all the layers of the protocol. Also, a simpler MACPut() is
also provided to stuff just one byte into the transmit buffer.

 MACFlush() will mark the transmit buffer as ready for transmit. Once the data
is marked ready for transmit, the NIC will continuously attempt to send the data
using Ethernet’s collision sense detection method.

 MACIsTxReady() will return TRUE if the transmit buffer is ready and free. It will
return FALSE if it is not, probably because it is still handling the last MACFlush()
command to send out the transmit buffer.

 Although the two examples in this chapter show how to send and receive
Ethernet packets, the examples are purely academic. The TCP/IP stack will
handle most of these low level functions.

CCS, Inc.

8 IP LAYER

 The Internet Protocol, or IP, is the network layer that makes up most of the Internet. Its
primary design feature was to allow for a packet-switched internetwork, where packets
from several networks could be dynamically routed to each other to fi nd the fastest route
between two nodes.

 Note, this tutorial will be discussing the IPv4 protocol. IPv6 was introduced several years
ago to increase the addressing space of the Internet to allow for more devices, and in
several years it is planned for all Internet nodes to be running IPv6. However, IPv4 will
still be supported for a long time.

 The IP packet format looks like this:

 Version & Header Len – The fi rst byte in the IP header is actually two 4-bit fi elds. The
most signifi cant four bits is the version of IP being used, which will be IPv4. The least
signifi cant four bits are the length of the header in 32-bit words, not including the header
options. The size of the header shown above is fi ve 32-bit words.

 Service – Often used by IP routers as a priority setting. This fi eld is ignored by the
Microchip TCP/IP stack.

 Length – The total length of the IP packet, including the header, header options and data.

 Ident and Fragment Flags & Offset – As packets route between several networks,
different physical/link layers may have different MTUs. Therefore, routers may need to
split IP packets into smaller IP packets to accommodate networks with smaller MTUs.
These fi elds handle this. The Microchip TCP/IP stack does not handle fragmentation.

0 1 2 3 4 5 6 7

0 Version &
Header Len

Service Length Ident Fragment
Flags & Offset

8 Time
to Live

Protocol Checksum Source
address

16 Destination
address

20
m

Header options
0-40 bytes

m+1
m+1+n

IP Payload
0-n bytes

Embedded Internet Exercise Book

 Time to Live – The time for this packet to live in seconds. As a packet is routed through
networks, routers will decrease this value until it reaches zero. Once it reaches zero the
router will discard the packet, and it is considered lost.

 Protocol – The protocol that is being used in the IP data field. Common protocols are
TCP (0x06), UDP (0x11) and ICMP (0x01).

 Checksum – A checksum of the IP header ensures the packet is not corrupted. Note that
this checksum does not include the payload.

 Options – Several options can be added to the IP, such as extra information about routing
and security. Options will not be used in this tutorial or in the programs.

 Source & Destination Address – An address to identify an individual computer on the
Internet. Each IP address must be unique. IPv4, the version of IP that we will be using,
uses four bytes of data to represent an IP address. IPv6 has increased the address
space to 16 bytes.

 There are a few IP addresses that have special meaning:
 Broadcast – An IP address of 255.255.255.255 is used to broadcast to all nodes on
 the LAN (local area network). Determining what is the LAN and what is the wide
 area network (WAN) will be described shortly.
 Loopback – Any address starting with 127 is a loopback address, and most TCP/IP
 stacks will loop all transmitted packets right back into the receiver. Usually the
 loopback address in TCP/IP stacks is 127.0.0.1, and the rest of the 127.*.*.* address
 space is unused.
 Private Networks - The following address ranges have been reserved for private use
 and are not explicitly connected to the Internet:
  10.0.0.0 to 10.255.255.255
  172.16.0.0. to 172.31.255.255
  192.168.0.0 to 192.168.255.255
 Many LAN networks will use these addresses, but then use a gateway (router or
 firewall) to connect the LAN to the Internet.

 IP was designed to create a routed, packet-switched internetwork, composed of several
different networks. The IP address is the primary component used to determine how to
route between several different networks. For example, a computer in the LAN with an
address of 192.168.100.15, talks to Google.com with an IP address of 64.233.187.104.
Since 192.168.*.* range was reserved for the LAN and not connected to the Internet a
gateway is used to bridge the LAN with the WAN (internet) .

CCS, Inc.

8 IP LAYER - CONT.

 A network specifi c confi guration called the “subnet mask” is used to determine the
difference between the LAN and the WAN. The source and destination address
are logically AND with the subnet mask, and if the two values are the same they are
considered on the same network. If the two values are different then the two nodes
are considered on a different network, so the communication must proceed through a
gateway (router or fi rewall).

 In the case using the above for Google.com, if a subnet mask of 255.255.0.0 is used:
 (255.255.0.0) & (64.233.187.104) = 64.233.0.0
 (255.255.0.0) & (192.168.100.15) = 192.168.0.0
 (64.233.0.0) != (192.168.0.0)
therefore these two nodes are on a different network, use a gateway.

 Another network specifi c confi guration is the gateway address. A gateway connects two
networks, and is often used to connect a LAN to a WAN. For simplicity a gateway can
also be considered a router, although they are not exactly the same. Many hardware
fi rewalls sold today also combine a router and fi rewall. In the above example, since
Google.com is not on the LAN, any physical/link layer packets cannot be directly sent to
Google.com. Instead the IP packet is sent to the gateway. The IP header will still contain
the IP address of Google.com, but in the physical/link layer the MAC address will be the
gateway’s address. The gateway/router/fi rewall will then know how to send the IP packet
to the next router in the network.

 IP sits on the network layer, above the physical/link layer. In order for two IP nodes to
communicate with each other, they need a method to learn the physical/link address of
each other. The protocol used in Ethernet to learn the physical/link address is ARP, and
is covered in Chapter 10.

 The next example will act as an IP packet sniffer and display header information of
incoming IP packets.

 Enter the following code into ex8a.c.

#include “ccstcpip.h”

void IPDisplayHeader(void) {
 IP_ADDR dest_ip;
 NODE_INFO node;
 int8 prot;
 int16 len;

(continued...)

Embedded Internet Exercise Book

(continued...)

 if (IPGetHeader(&dest_ip, &node, &prot, &len)) {
 printf(“\r\n DEST: %U.%U.%U.%U SRC: %U.%U.%U.%U LEN: %LU PROT: %X “,
 dest_ip.v[0], dest_ip.v[1], dest_ip.v[2], dest_ip.v[3],
 node.IPAddr.v[0], node.IPAddr.v[1], node.IPAddr.v[2], node.IPAddr.v[3],
 len, prot);
 if (prot==IP_PROT_ICMP) {printf(“[ICMP]”);}
 else if (prot==IP_PROT_TCP) {printf(“[TCP]”);}
 else if (prot==IP_PROT_UDP) {printf(“[UDP]”);}
 }
 else {
 printf(“\r\n [MALFORMED IP]”);
 }
}

void MACDisplayHeader(MAC_ADDR *mac, int8 type) {
 int8 i;
 printf(“\r\nMAC: “);
 for (i=0;i<6;i++) {
 printf(“%X”, mac->v[i]);
 if (i!=5)
 putc(‘:’);
 }
 printf(“ PROT:0x08%X “,type);
 if (type==MAC_IP)
{
 printf(“[IP]”);
 IPDisplayHeader();
 }
 else if (type==MAC_ARP)
 printf(“[ARP]”);
}

void main(void) {
 MAC_ADDR mac;
 int8 type;

 printf(“\r\n\nCCS TCP/IP TUTORIAL, EXAMPLE 0A\r\n”);

 MACAddrInit();

 MACInit();

 while(TRUE) {
 if (MACGetHeader(&mac, &type)) {
 if (type!=MAC_UNKNOWN) {
 MACDisplayHeader(&mac, type);
 }
 }
 }
}

 Compile and run on the prototyping board

CCS, Inc.

8 IP LAYER - CONT.

 Examine the serial output, and notice the messages will appear as follows:

 MAC: 00:C0:EE:D6:0F:99 PROT:0x0806 [ARP]
 MAC: 00:03:6D:1D:53:9A PROT:0x0806 [ARP]
 MAC: 00:A0:CC:63:E5:AA PROT:0x0800 [IP]
 DEST: 192.168.100.255 SRC: 192.168.100.166 LEN: 198 PROT: 11 [UDP]
 MAC: 00:0A:E6:60:68:11 PROT:0x0800 [IP]
 DEST: 192.168.100.255 SRC: 192.168.100.106 LEN: 58 PROT: 11 [UDP]
 MAC: 00:03:6D:1D:53:9A PROT:0x0806 [ARP]
 MAC: 02:A0:CC:65:8F:C9 PROT:0x0800 [IP]
 DEST: 192.168.100.255 SRC: 192.168.100.209 LEN: 215 PROT: 11 [UDP]
 MAC: 00:03:6D:1D:53:9A PROT:0x0806 [ARP]

 MAC is the MAC address of the sender, PROT is the protocol fi eld. If an IP protocol was
detected, it will display the destination and source IP address of this packet, as well as
the length of the IP datagram and the IP protocol being used.

N
O

T
E

S

 Notice that this is the same code as ex7a.c, but IPDisplayHeader() was added
to display IP header information if the received Ethernet packet contains an
IP packet.

 IPGetHeader(*DEST_IP, *NODE, *PROTOCOL, &LEN) will return TRUE if that
Ethernet packet contains an IP header that is compatible with the IP stack, and if
the IP packet destination address matches the IP address (or if its a broadcast IP
address). Only call IPGetHeader() if MACGetHeader() was successfully called
and the Ethernet protocol fi eld specifi es IP.

 The NODE fi eld contains the MAC address and IP address of the node on the
network that transmitted the network packet. Keep both of these values in case
a reply needs to be sent.

 NODE_INFO and IP_ADDR are structures defi ned in the TCP/IP stack.

 To read the contents of the data in the IP packet after a succesful IPGetHeader(),
use the function IPGetArray(). See AN833 for more documentation.

Embedded Internet Exercise Book

 Enter the following code into ex8b.c.

 To inspect the process of sending IP packets, add the following code into ccstcpip.h:
* Note: alter the code in IPAddrInit() to use the Subnet Mask and
Network Gateway address of your network. Also, set the IP address
of the unit to a free IP address in your network. If these values are
unknown, consult your network administrator or use the ipconfi g tool
included in Microsoft Windows (ifconfi g in Linux).

void IPAddrInit(void) {
 //IP address of this unit
 MY _ IP _ BYTE1=192;
 MY _ IP _ BYTE2=168;
 MY _ IP _ BYTE3=100;
 MY _ IP _ BYTE4=7;
 //network gateway
 MY _ GATE _ BYTE1=192;
 MY _ GATE _ BYTE2=168;
 MY _ GATE _ BYTE3=100;
 MY _ GATE _ BYTE4=1;
 //subnet mask
 MY _ MASK _ BYTE1=255;
 MY _ MASK _ BYTE2=255;
 MY _ MASK _ BYTE3=255;
 MY _ MASK _ BYTE4=0;
}

void main(void) {
 NODE _ INFO node;

 set _ tris _ b(0);

 IPAddrInit();
 MACAddrInit();

 MACInit();

 memset(&node.MACAddr.v[0], 0xFF, sizeof(MAC _ ADDR));

 node.IPAddr.v[0]=192;
 node.IPAddr.v[1]=168;
 node.IPAddr.v[2]=100;
 node.IPAddr.v[3]=8;
 while(TRUE) {
 if (IPIsTxReady()) {
 IPPutHeader(&node, IP _ PROT _ UDP, sizeof(ExampleUDPPacket));
 IPPutArray(ExampleUDPPacket, sizeof(ExampleUDPPacket));
 MACFlush();
 output _ toggle(USER _ LED1);
 delay _ ms(1000);
 }
 }
}

 Compile and run on prototyping board.

CCS, Inc.

8 IP LAYER - CONT.

 This example is similar to the second example in Chapter 7: every second an IP
datagram is sent that contains a UDP datagram. In fact, the same packet is sent in this
example that was sent in Chapter 7. The only difference in this new example is that the
stack’s IP routines were used to generate the IP header. While this example is running,
use Ethereal to view the packets:

Embedded Internet Exercise Book

N
O

T
E

S
 NODE_INFO is a structure that contains the MAC Address and the IP Address of

the destination node. Both addresses are needed..

 This example sets the units IP address to 192.168.100.7 and the destination IP
address to 192.168.100.8. Or set both of these IP addresses to two open IP ad-
dresses on the network to prevent confusion within a network.

 This example sets the destination MAC address to FF:FF:FF:FF:FF:FF, which is
the broadcast address, so each node on the Ethernet network will receive this
packet. It is not effi cient to use the broadcast address, later ARP will be used to
fi nd the MAC address of the specifi ed IP address.

 IPIsTxReady() verifi es that the IP stack is ready to transmit a new IP datagram,
and also verifi es that the Ethernet transmit buffer is open and free.

 IPPutHeader(*NODE_INFO, protocol, size) creates a valid IP datagram header
for the specifi ed destination node, and puts that header into the transmit buffer.

 IPPutArray(*array, size) puts the specifi ed array into the transmit buffer. Do not
call this until after IPPutHeader() has put the IP header into the transmit buffer.

 MACFlush() marks the Ethernet transmit buffer as ready for transmission, just as
in the previous example.

 While the two previous examples show how to send and receive IP packets, these
examples are purely academic. If using TCP/IP or UDP/IP, the Microchip stack will
handle all this.

CCS, Inc.

9 ADDRESS RESOLUTION
PROTOCOL (ARP)

 The IP protocol is in the network layer, so it requires a physical and link layer to act as
the medium. In order for two devices on the link layer to communicate the two devices
must know their link layer address, which is different from the IP address. In Ethernet
the link layer address is the MAC address. Therefore, if two devices using IP want to
communicate with each other they must have a way of determining the link layer address
between the two nodes. On Ethernet, the method of determining the MAC address of a
specifi ed IP address is Address Resolution Protocol (or ARP).

 The ARP packet format is as follows:

0 1 2 3 4 5 6 7

0 Hardware
 Type

Protocol
Type

Hardware
Adr. Len

Protocol
Adr. Len Operation

8 Sender
Hardware Address

Sender
IP Address

16 Sender
IP Address (cont)

Target
Hardware Address

24 Target
IP Address

 Hardware Type – The Link Layer medium being used. Ethernet (0x0001) will be used.
 Protocol Type – The Network Layer protocol being used. IP (0x0800) will be used.
 Hardware Address Length – The size, in bytes, of the Link Layer address. A MAC address

is 6 bytes long.
 Protocol Address Length - The size, in bytes, of the Network Layer address. An IP

address is 4 bytes long.
 Operation – The opcode. We will handle request (0x0001) and reply (0x0002).
 Sender Address – These specify the link layer (Ethernet) and network layer (IP) address of

the unit making the request/sending reply.
 Target Address – These specify the link layer (Ethernet) and network layer (IP) of the

unit receiving the request/receiving the reply. If a request is being made for an Ethernet
address, the Target Hardware Address will be zeroed out.

 The fi rst example will look at answering ARP requests using the ARP functions included in
the Microchip TCP/IP stack.

Embedded Internet Exercise Book

 Enter the following code into ex9a.c

#defi ne STACK _ USE _ ARP 1
#include “ccstcpip.h”

enum {ARP _ ST _ IDLE=0, ARP _ ST _ REPLY=1} my _ arp _ state=0;
NODE _ INFO arp _ req _ src;

void my _ arp _ task(void) {
 switch (my _ arp _ state) {
 case ARP _ ST _ REPLY:
 if (ARPIsTxReady()) {
 ARPPut(&arp _ req _ src, ARP _ REPLY);
 my _ arp _ state=ARP _ ST _ IDLE;
 }
 break;

 default:
 break;
 }
}

void main(void) {
 NODE _ INFO src;
 int8 opCode, type;

 set _ tris _ b(0);
 printf(“\r\n\nCCS TCP/IP TUTORIAL, EXAMPLE 9A (ARP RECEIVE)\r\n”);

 MACAddrInit();
 IPAddrInit();

 MACInit();

 while(TRUE) {
 if (MACGetHeader(&src.MACAddr, &type)) {
 if (type==MAC _ ARP) {
 if (ARPGet(&arp _ req _ src, &opCode)) {
 output _ toggle(USER _ LED1);
 my _ arp _ state=ARP _ ST _ REPLY;
 }
 }
 }
 my _ arp _ task();
 }
}

 Compile and run on the prototyping board.

CCS, Inc.

 Once running on the prototyping board, this fi rmware will answer any ARP requests
asking for a MAC address. Unfortunately, there is no simple way of making an ARP
request on a Windows PC, but there are some tools available. The ARP tool can
be used to display a list of all known Ethernet addresses and their accompanying IP
address. Running “arp -a” will display this table. Run “arp -a” in a command line prompt
and verify that the IP address of the unit, which is set in the IPAddrInit() function, is not
in the current ARP table. If the IP address of the unit is in the ARP table, use “arp -d” to
delete that entry in the ARP table.

 Make an ARP request by issuing a ping to the unit. Ping is a tool that is used to debug
IP connections to verify that an IP address is reachable. Ping will be covered in the next
chapter. For now use a ping to initiate an ARP request. From the command line, run
“ping 192.168.100.7” where 192.168.100.7 is the IP address specifi ed in the IPAddrInit()
function. While the unit will not respond to the ping, it will respond to the ARP request.
Running “arp -a” should now show 192.168.100.7 in the ARP table at 01:02:03:04:05:06.
If running Ethereal to packet sniff this transaction, the following will appear:

9 ADDRESS RESOLUTION
PROTOCOL (ARP) - CONT.

Embedded Internet Exercise Book

N
O

T
E

S
 Defi ne STACK_USE_ARP as TRUE early in the code to include the ARP

functions. Not all link layers need ARP (for example point-to-point protocols such
as SLIP and PPP do not need address resolution since there is no link layer
addressing), so it does not always need to be included. ARP is required for
Ethernet.

 ARPGet(*NODE_INFO, *opCode) returns TRUE if it received a request for it’s IP
address, and the opCode was a request. Over the LAN there will be many ARP
requests being made, but the unit should only respond to requests asking for it’s
address.

 ARPIsTxReady() returns TRUE if the Ethernet transmit buffer is empty and
ready, and if the ARP handler is available for sending requests/responses. Do
not attempt to send ARP requests/responses unless this returns TRUE.

 To prevent sitting in a loop waiting for ARPIsTxReady() to return TRUE, my_ARP
_TASK() use a cooperative method to free up CPU time for other tasks as de-
tailed in Chapter 5 of this tutorial.

 ARPPut(*NODE_INFO, opCode) sends an ARP response/request to the
specifi ed remote node.

 It is possible to replace ARPGet() and ARPPut() with MACGet() and MACPut(),
but then you would have to manually parse an ARP packet.

 ARP can be used to sniff the entire network to determine the IP<->MAC address of
each node in the network. The following example, ex9b will do just that, and has been
provided on the Development Tools CD-R.
 Open ex9b.c on the CD-R, compile and run on the prototyping board. When viewing the

output on a serial terminal, notice which IP addresses respond to ARP and what that IP
address is:

192.168.100.1 <-> 00:0D:88:B0:12:6F
192.168.100.2 <-> NO RESPONSE
192.168.100.3 <-> 61:3B:F7:7A:11:55
192.168.100.4 <-> NO RESPONSE
192.168.100.5 <-> 00:09:5B:E1:30:E2
192.168.100.6 <-> 00:0A:E6:61:F4:1D

N
O

TE
S  This example assumes that the network is 192.168.100.*. If this is not the case,
edit IPAddrInit() in ccstcpip.h.

 This example calls the same ARP functions as the previous example, but instead
of sending a response we send a request.

 Most TCP/IP stacks hold a cache of ARP results. For example, using the
ARP tool in Microsoft Windows shows the current cache of ARP results. The
Microchip TCP/IP stack only caches one result.

 These two examples were purely academic. The Microchip TCP/IP stack will handle all
ARP requests and responses.

CCS, Inc.

10 INTERNET CONTROL
MESSAGE PROTOCOL (ICMP)

 The Internet Control Message Protocol, or ICMP, is used primarily for diagnostics. The
most useful tool in ICMP is “ping”, which is used to determine if a specifi c IP address is
reachable. ICMP messages are carried in an IP payload with the IP datagram protocol
fi eld set to 1. The ICMP header and packet follows this format:

0 1 2 3 4 5 6 7

0 Type Code Checksum Palyoad

8 Payload (cont) Payload (cont) [optional]

 Type – The ICMP request type. Since the primary goal will be to respond to ping
requests, the two codes are: 0x00-Echo Reply and 0x08-Echo Request. There are
many more requests.

 Code – If a destination is unreachable, this fi eld denotes at which level (host, protocol,
port, etc).

 Checksum – A checksum of the ICMP header and data. The IP header checksum
algorithm is used.

 Payload – A minimum of eight bytes. When making an echo request/reply, the fi rst two
bytes are the identifi er and the next two bytes are the sequence number.

 When an ICMP packet with an echo request code is received, the receiving node just has
to echo it back with an echo response code. The following example will do just that and
is included on the Development Tools CD-Rom.

 Open ex10a.c on the CD-R, compile and run on the prototyping board. Once the
fi rmware is running on the unit, use the command line tool “ping” to ping the unit, and it
will respond successfully:

C:\ping 192.168.100.7

Pinging 192.168.100.7 with 32 bytes of data:

Reply from 192.168.100.7: bytes=32 time=3ms TTL=100
Reply from 192.168.100.7: bytes=32 time=3ms TTL=100
Reply from 192.168.100.7: bytes=32 time=3ms TTL=100
Reply from 192.168.100.7: bytes=32 time=3ms TTL=100

Ping statistics for 192.168.100.7:
 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
 Minimum = 3ms, Maximum = 3ms, Average = 3ms

 The following is a screen shot of Ethereal viewing a ping transaction:

Embedded Internet Exercise Book

NOTES  This example assumes that the IP address is 192.168.100.7. If this is not the case,
edit IPAddrInit() in ccstcpip.h. Also, edit the IP address used for the ping command.

 This example is purely academic, the TCP/IP stack provided by Microchip will automatically
handle ICMP requests. To demonstrate how the TCP/IP stack provided by Microchip
handles all the low level functions, enter the following code as ex10b.c, compile and run on
the prototyping board:

#defi ne STACK _ USE _ ICMP 1
#defi ne STACK _ USE _ ARP 1
#include “ccstcpip.h”

void main(void) {
 MACAddrInit();
 IPAddrInit();

 StackInit();

 while(TRUE) {
 StackTask();
 }
}

N
O

T
E

S

 StackInit() initializes the Microchip TCP/IP stack. This will initialize the Ethernet
controller, the IP, ARP, UDP and TCP state machines, etc.

 It is still necessary to initialize MAC address and IP address, which is done by the
custom functions MACAddrInit() and IPAddrInit(). The next chapter will use DHCP
to automatically fi nd an IP address and network information.

 StackTask() checks the Ethernet receive buffer for incoming packets, and if there
are packets in the buffer, it will pass the packet to the higher layers, such as ARP, IP,
TCP, UDP, etc. For example, if an ARP request is received StackTask() it checks to
see if it is a request for the user, and if it is, it will parse and send a response.

 StackTask() also keeps an eye on the Ethernet transmit buffer, as certain tasks must
wait for the transmit buffer to be free. For example, the ARP task may take a few
StackTask() calls until the transmit buffer is free, at which time the response is sent.

 From this point onward StackTask() will be used to handle all the lower level functions.

CCS, Inc.

DYNAMIC HOST CONFIGURATION
PROTOCOL (DHCP)11

 Dynamic Host Confi guration Protocol, or DHCP, allows a node on an IP network to
automatically allocate an IP address to the unit and learn the network parameters such
as gateway and netmask. DHCP is found on many networks, and is great for allowing
notebooks (or other hosts) to simply plug into a network without having a user enter
network confi guration parameters.

 This chapter will use DHCP to confi gure the Microchip TCP/IP stack automatically. (If
DHCP is not available on your network, skip to the next chapter. This example will write
to the LCD on the prototyping board, so it may still be interesting to users without DHCP.)

 Implementing DHCP in an application is easy using the Microchip TCP/IP stack, as
DHCP support is provided. An example is provided on the Development Tools CD-R,
called ex11.c. Open ex11.c, compile it and run on the prototyping board.

 The second line of the LCD will show one of three messages:

 Once an IP address is confi gured, verify by using the ping tool.

N
O

T
E

S

 StackTask() handles all the Ethernet, IP, ARP, DHCP and ICMP messages nec-
essary for this example. Since StackTask() is doing all the work, the majority of
this code is refreshing the LCD every second with the current DHCP status.

 Defi ning STACK_USE_DHCP to TRUE will include all the DHCP code into the
TCP/IP stack. Once it is included StackInit() and StackTask() will automatically
handle DHCP requests.

 MACIsLinked() returns TRUE if an Ethernet cable is connected to the Ethernet
controller.

 DHCPIsBound() returns TRUE if the unit has been successfully confi gured
by the DHCP server. If using DHCP, do not attempt to use the network until
DHCPIsBound() returns TRUE.

 Once DHCP is bound, the network mask and the network gateway will also be
confi gured.

 To dynamically disable DHCP in the code, call DHCPDisable() before the fi rst
StackTask().

 Disable an already confi gured DHCP connection by calling DHCPAbort(). This
will release the IP address so the DHCP server can use it for another node.

No Ethernet No Ethernet cable is connected to the Ethernet connector.

DCHP Not Bound DHCP could not reach a DHCP server, or DHCP server has not
fi nished confi guring unit.

x.x.x.x DHCP server has responded by confi guring your unit to this IP
address.

 The rest of this tutorial assumes there is no DHCP, and will statically confi gure the IP
network settings as done in previous chapters.

Embedded Internet Exercise Book

 UDP is a simple, lightweight transaction layer. Combined with IP, commonly called
UDP/IP, the user may quickly design simple communications between two devices on
an internetwork. As a transaction layer, UDP is a lightweight alternative to TCP; UDP is
easier to implement and requires fewer resources on the microcontroller.

 UDP does have some drawbacks. First, there is no guarantee that packets will be
received in the order they were sent. Second, there is no method to determine if a
packet was successfully received. TCP does not have these drawbacks, and TCP will
automatically resend a packet if it was not successfully received. For some applications,
such as audio and video streaming, these drawbacks are not a concern. If these
drawbacks are a problem in an application, implement a sequencing and ACK messaging
format.

 The format of a UDP datagram is as follows:

0 1 2 3 4 5 6 7

0 Source Port Destination Port Message Length Checksum

8

Payload

n

 Source/Destination Port – Application multiplexing is provided through the source and
destination port. An application can listen to a specifi c port, and any packet received that
matches that specifi c destination port is considered destined for that application. The
application could then respond by sending a response to the port specifi ed in the source port.

 Message Length – Length of UDP header and data.
 Checksum – The checksum of the UDP header and data.
 Payload – Data of the UDP datagram. It can be 0 bytes if the request contains no data.

There is no limit to the size of the data fi eld as IP will fragment messages as needed by
network constraints.

 To demonstrate UDP, CCS has provided an example that runs on the development kt
and talks to a simple PC application. First, compile and run EX12.C included on the
Development Tools CD-R. Once running, note the following on the LCD screen:

CCS UDP TUTORIAL
LISTENING

USER DATAGRAM PROTOCOL (UDP) 12

CCS, Inc.

USER DATAGRAM
PROTOCOL (UDP) - CONT.12

 The prototyping board is now listening for incoming UDP packets on port 1024. Execute
UDP.EXE that is also on the CD-R. UDP.EXE is a simple application that can let you
send/receive UDP packets to a specifi ed IP address:

 Once both UDP.EXE and EX12.C is running, press the “Open port” button in UDP.EXE.
(Note: The IP address of the development kit should be entered into the text box labeled
“Dest IP”). Once the port is open, insert characters into the “Outgoing Data” text box and
press Send. If successful, the text will show up on the LCD screen. The LCD will also show
the IP address of the last unit that sent a UDP packet.

 Once the prototyping board has received an IP address, press the buttons on the
development board. Pressing the left button (the button nearest to the potentiometer) will
send a plain-text “BUTTON1” over UDP, pressing the right button will send “BUTTON2”. This
text should show up in the “Incoming Data” textbox in UDP.EXE.

Embedded Internet Exercise Book

N
O

T
E

S
 Before any UDP communication can take place, UDPOpen() must be called.

Calling UDPOpen() creates an active socket between the microcontroller and the
remote node. This socket identifi er is used to distinguish between several active
communications. With cooperative multitasking, several of these communication
sockets can be active at once.

 UDPOpen(localPort, *remoteNode, remotePort) will create a communication
socket between the microcontroller (using localPort as its socket) and the remote
node (where remoteNode is a NODE_INFO struct holding the IP and MAC
address, and remotePort is the UDP port of the remote node)

 UDPOpen(localPort, NULL, INVALID_UDP_PORT) will create a communication
socket that listens for incoming packets from any remote node.

 If UDPOpen() returns INVALID_UDP_PORT that means there are no more
communication sockets. Defi ne the maximum number of UDP and TCP sockets
by the constants MAX_SOCKETS and MAX_UDP_SOCKETS. One socket
takes more than 35 bytes of RAM, so only enable as many sockets as needed to
save RAM.

 UDPIsPutReady(socket) checks to make sure the Ethernet transmit buffer is
free, and that the socket is still connected. Make sure this returns TRUE before
an attempt to transmit any data. This also sets this socket as the active socket
for any future UDPPut() calls.

 UDPPut(c) puts the specifi ed byte into the UDP datagram’s data fi eld. It will
return TRUE if successfully.

 UDPFlush() marks the UDP datagram as ready to transmit. Once the Ethernet
transmit buffer is free and ready, the Microchip TCP/IP stack will then create the
Ethernet and IP headers automatically, and then send the UDP datagram.

 UDPIsGetReady(socket) checks the Ethernet receive buffer, and returns TRUE
if the data in the Ethernet receive buffer is destined for this socket. It also marks
this socket as the active socket for any future UDPGet() calls. IMPORTANT: if
data is in the receive buffer it must be received and processed, because the next
time StackTask() is called, the data in the receive buffer will be thrown away.

 UDPGet(&c) returns the next byte of data in the UDP datagram’s data fi eld. If it
successfully received a byte, it saves to pointer and returns TRUE. If it returns
FALSE there is no more data left in the datagram.

 UDPDiscard() throws away the rest of the data in the receive buffer.

 UDPClose(socket) frees the specifi ed socket. Once freed, use UDPOpen() to
create a new connection.

 The source code to UDP.EXE is also available on the Development Tools CD-R.

CCS, Inc.

13 TRANSMISSION
CONTROL PROTOCOL (TCP)

 The previous chapter reviewed the UDP transport layer, and was noted that UDP’s simple
design does not include guaranteed packet delivery. TCP is a more complex transport
layer that adds: a persistent bi-directional connection, datagram duplication handling,
datagram out-of-order handling, datagram loss handling, and fl ow control.

 The TCP datagram appears as follows:

0 1 2 3 4 5 6 7

0 Source
Port

Destination
Port

Sequence
Number

8 Acknowledge
Number

Header
Length Flags Window

Size

16 Checksum Urgent
Pointer Options

n
m Payload

 Source Port and Destination Port – To allow multiplexing TCP over several different
applications, source and destination port combined with remote node’s IP address can
give many concurrent, persistent and individual connections. Several ports are well
known, for example port 80 is used for HTTP. Web servers will listen to port 80 for
incoming TCP connections.

 Sequence Number and Acknowledge number – These provide a method of out-of-order
datagram and datagram loss handling. For example, if a node sends a TCP datagram
with 20 data bytes with a sequence number of 100, the receiving node will send an
acknowledge of 120 to signify to the transmitting node that it received the 20 bytes of
data. The receiving node now knows that the next packet should have a sequence
number of 120, otherwise it will be out-of-order. If a node received two packets with the
same sequence number and same data size, it would know that one is a duplicate. If a
node received a packet with a sequence number that was out-of-order, it must save the
packet until the missing packet arrives. The node will then place the packets back into
order. Also see Window Size.

Embedded Internet Exercise Book

 Header Length – Total size of the TCP datagram header, including options, divided by 4.
 Flags – Option flags. Here are a few of the more important ones:
 Bit 4 – ACK – Acknowledge the last received packet
 Bit 2 – RESET – Force a closure of the connection
 Bit 1 – SYN – Synchronization (create connection)
 Bit 0 – FIN – Ask for a closure of the connection

 Window Size - Specifies how much buffer space the receiving node has for
reconstructing packets if they arrive out-of-order. The Microchip TCP/IP stack will set the
window size to one segment as Microchip microcontrollers do not have enough RAM to
reconstruct out-of-order packets.

 Checksum – Checksum of the header and data.
 Urgent Pointer – Can be used to signify urgent data. This is not used by the Microchip

TCP/IP stack.
 TCP is a connection orientated transport layer. Once a connection is made, data can be

sent bi-directionally until one of the units initiates a disconnect and both units close the
connection. The methods to listen, open and close connections can best be described
with the TCP/IP state diagram:

CCS, Inc.

 Imposed on the previous state diagram are the routines provided by the Microchip TCP/
IP stack to open connections and close connections. Once a connection is established,
data can be sent and received bi-directionally.

 This chapter will use the Microchip TCP/IP routines to create an example TCP/IP client
that will talk to a TCP/IP server on a PC. Open EX13.C on the Development Tools CD-
R. Change the IP address in ServerAddrInit() to the IP address of the computer. Then
compile and run EX13.C on the prototyping board. Once it is running, the following will
appear on the LCD screen:

CCS TCP TUTORIAL
CONNECTING

 This example is now attempting to connect to the IP address set in ServerAddrInit(). On
the CD-R, run TCPServer.EXE. Note the following on the PC:

 Press the “Listen” button. The PC will now listen to the specifi ed socket, which is what the
prototyping board is trying to connect to. Now that the PC is listening, a connection should
eventually be made. Notice a successful connection in the “Incoming Data” text box in
TCPServer.EXE. Also, the LCD it should now say “Connected!” on the bottom line. Now
that it is connected, enter text into the “Outgoing Data” window of TCPServer.EXE and
press send – that text should now be shown on the second line of the LCD.

TRANSMISSION
CONTROL PROTOCOL (TCP) - CONT.13

Embedded Internet Exercise Book

N
O

T
E

S

 TCPConnect(*NODE_INFO, port) will attempt a connection to the remote node
(specify both an IP address and a MAC address) using the specifi ed port. After
issuing a TCPConnect(), the Microchip TCP/IP stack will start issuing SYN
packets to the specifi ed remote node and handle responses to the SYN request.
TCPConnect() will return a socket number used to signify this connection. The
fi rmware must remember this socket number if it wishes to use this connection.

 TCPIsConnected(socket) returns TRUE when the TCP/IP state has reached
Established state. Due to the cooperative method that the Microchip TCP/IP stack
is implemented, do not sit in an infi nite loop until TCPIsConnected() returns TRUE.
If it returns FALSE, wait until the next task time to try again. (A task time in the
Microchip TCP/IP stack is the next time after calling StackTask()).

 TCPIsPutReady(socket) returns TRUE if the TCP/IP socket is connected, the
Ethernet transmit buffer is free and the TCP/IP state is ready to handle transmitting
a packet. It also prepares the TCP/IP stack for the next TCP datagram by
initializing the TCP header and writing the Ethernet and IP header to the Ethernet
transmit buffer.

 TCPPut(socket, c) puts a character into the TCP datagram data fi eld, and returns
TRUE if successful.

 TCPPutArray(socket, int8 *ptr, int16 size) will put the specifi ed characters into the
TCP datagram fi eld and return TRUE if successful. (Note: This function was not
written by Microchip and so it is not in their API documentation)

 TCPFlush(socket) marks the TCP datagram (and accompanying Ethernet and
IP header) as ready for transmission. It may take several task times for a TCP
datagram to be sent, especially if there is a retry. After calling TCPFlush() do not
use TCPPut() again until TCPIsPutReady() returns TRUE.

 TCPIsGetReady(socket) returns TRUE if there is a TCP datagram destined for
this socket that must handled. The Microchip TCP/IP stack verifi es all header
checksums, and that the TCP packets are received in order, and that there are no
duplicate TCP packets. If the TCP packet is not handled now, the datagram will be
lost by the next task time.

 TCPGet(socket, *c) and TCPGetArray(socket, *array, size) reads data out
of the TCP datagram data fi eld. TCPGet() returns TRUE if successful, and
TCPGetArray() returns the number of bytes read.

 TCPDiscard(socket) discards any remaining data left in the TCP datagram and
frees up the Ethernet receive buffer for more data. This is automatically done at
the end of the task time.

 The source code for TCPServer.Exe is on the Development Tools CD-R.

 When connected, pressing the left button on the prototyping board should send a
“BUTTON C=1” string to the PC, which will be displayed in the “Incoming Data” text box
of TCPServer.exe. The number will increment with each button press. Pressing the right
button will cause the board to disconnect.

 For further study: try EX13B.C with TCPClient.EXE. in this example the PIC is the server
and the PC is the client.

CCS, Inc.

14 HYPERTEXT
TRANSFER PROTOCOL (HTTP)

 The last chapter reviewed a custom made TCP client that talked to a simple TCP server
running on the PC. This chapter will focus on using the Microchip TCP/IP stack and the
develpment kit to make a TCP server, in particular a webserver.

 HTTP is the protocol used to serve and request web pages from web-servers. The
protocol is fairly simple: requests are made in ASCII strings, where each parameter of the
request is a separate line of ASCII. An empty line is used to denote end of parameters.
After a client makes its requests, the web server answers with its response. First the
webserver responds with its own parameters, where each parameter is a seperate line of
ASCII. An empty line is used to denote end of parameters, and then any data following is
considered the web page or the content that was requested by the web client.

 Most HTTP servers listen to TCP port 80, but this is not a requirement. Typically a web
browser (such as Internet Explorer) opens a communication socket to TCP port 80 and
will not close the socket until after a user closes the web browser or goes to a different
site. By keeping the TCP port open as long as possible, it can speed up the time it takes
to download a page by not having to open/close a socket for each request, especially
since a webpage may have linked images that need to be downloaded to properly display
the page.

 For example, here is a simple request:

GET /DIRECTORY/FILE HTTP/1.1

 /directory/fi le is the fi le requested. There are many other options that may be found in a
HTTP requests, but the only necessary one is the GET command which tells the webserver
which fi le to download. The fi le requested does not have to be a webpage, HTTP can be
used to transfer any kind of fi le – an example would be when downloading a ZIP fi le or
a PDF from a website. /directory/fi le is relative to the host domain. For example, when
viewing http://www.google.com/dir1/dir2/fi le.html, the GET request would be /dir1/dir2/fi le.
html. Asking for www.google.com would result in a GET/ (this is called the root index).

 Here is a simple response to the above request:

HTTP/1.1 200 OK
Content-Type: text/html

insert webpage here

 There can be many other responses, such as content-length, date/time, etc, but these are
the only two that are needed. The fi rst line is the error code result as a response to the
GET command. 200 is an error code for success, 404 is the error code for page missing,
etc. The second line is the response that tells the browser what format the resulting data is
in. Do not forget that after all response options, a blank line is needed before sending data.

Embedded Internet Exercise Book

192.168.100.7
Listening

 To see more HTTP requests examples, use Ethereal to packet sniff while surfi ng with a web
browser.

 To demonstrate the server mode of the TCP/IP stack, a simple webserver example has
been created and can be found on the Development Tools CD-R as EX14.C. Compile
EX14.c and run on the prototyping board. Once the example is running, the following will
appear on the LCD:

 The top line of the LCD is the IP address of the development kit. In a web browser, open
that IP address. There should be a page that displays the analog-to-digital values for AN0
and AN1:

 Turn the potentiometer on the prototyping board and refresh the page to change what is
displayed on the webpage. While a web browser is connected to the prototyping board,
the IP address of the web browser will be displayed on the second line of the LCD. If no
browser is connected, it should say ‘Listening’.

Embedded Internet Exercise Book

N
O

T
E

S

 TCPListen(port) will open the specifi ed port and listen for a connection.
TCPListen() will return a socket number if successful, or INVALID_SOCKET if there
are no more sockets left. To have multiple sockets listening to the same port, call
TCPListen() more than once with the same port.

 HTTPTask() only creates one socket, and therefore, only one web browser
may connect at once. Add more sockets for more simultaneous connections
by changing HTTPSocket and state in HTTPTask() to be an array; where each
element of such array represents the socket and state for each connection.
HTTPTask() will have to iterate though the state machine for each socket within
one task time.

 This simple webserver does not parse any of the requests made by the websever.
In particular, it does not parse the GET command to fi nd the requested page. The
webserver assumes it is only asking for one page.

CCS, Inc.

ADVANCED HTTP
(WEB INTERFACES)15

 Chapters 12 and 13 used custom PC applications to send and receive data to the
microcontroller. While this method works, each PC needs that specifi c application installed on
the computer – and some computers cannot run those applications because of incompatible
processor architecture or incompatible operating systems. Every modern operating system
has a web browser, and implementing a web interface on the embedded device may give
access to the device from any computer. Such web interfaces can be implemented using
CGI.

 Common Gateway Interface, or CGI, is the name of the method used to transfer data from
the client (or web browser) to the web server at which point the web server can execute the
data and generate a dynamic page based upon that content. An example is google.com
– When entering a search term on google.com, CGI is used to pass that value to the web
server, at which point google.com executes the search and reports the result.

 In order to use CGI, a web server must support it. The previous chapter created a very
simple webserver, but it did not include CGI support. This chapter will look at using a more
advanced HTTP server that is included in the TCP/IP stack that supports CGI and multiple
pages.

 There are two methods by which the web browser can send data to the HTTP server, GET
and POST. The previous chapter reviewed GET, although no CGI data was sent. GET
sends CGI data by appending key/value pairs onto the request line. The following is an
example request:

GET /directory/fi le.html?KEY1=VALUE1&KEY2=VALUE2&KEY3=VALUE3 HTTP/1.1

NOTES  The HTTP server included by CCS was written by CCS, and is different
than the HTTP server that was originally included by Microchip.

Embedded Internet Exercise Book

 This looks similar to the GET request that was demonstrated in the previous chapter, but
the key/value pairs are appended after the fi lename. The ‘?’ character is used to denote
parameters that the HTTP server is supposed to parse for CGI when using GET. Each
key/value pair is then seperated by the ‘&’ character.

 When using the POST method, CGI data is appended to the end of the HTTP request.
Here is an example:

POST /directory/fi le.html HTTP/1.1
Content-Length: xx

KEY1=VALUE1&KEY2=VALUE2&KEY3=VALUE3

 For both GET and POST examples there may be many more parameters being passed, and
these examples only show the required parameters. When a POST request is made, an
important parameter is Content-Length, which tells the server how many characters of CGI
data are being sent.

 GET requests are easier to develop and use because parameters can be passed using
the location bar of the web browser, but there is a limitation of 255 characters for the GET
request. (This is a standard limitation of HTTP, not a limitation based upon the Microchip
TCP/IP stack). POST gives you more security as the data is not shown in the location bar,
and there is no maximum number of characters that POST can handle.

CCS, Inc.

ADVANCED HTTP
(WEB INTERFACES)15

 The website uses an HTML input form to change the data displayed on the LCD and to
change the status of the two LEDs. Click on the “Analog Readings” link to go to another page
on the prototyping board server that displays the current ADC readings of AN0 and AN1.

 Using the more advanced HTTP server can be done by defi ning STACK_USE_HTTP
to TRUE before including the TCP/IP stack header fi le stacktsk.h. The application must
also include three callback functions that the HTTP server must use for fi nding pages and
processing CGI data. Open ex15.c in the examples directory. Compile and run ex15.c
on the prototyping board.

 Once the example is running in the prototyping board, use the web browser to open the
IP address of the prototyping board. (The IP address of the prototyping board is set in
IPAddrInit() and is displayed on the top line of the LCD). A web page with a form allows for
change of the LEDs or the message displayed on the LCD:

Embedded Internet Exercise Book

N
O

T
E

S
 StackTask() will call HTTP_Task() to automatically answer HTTP requests made to

the unit. In order to transfer dynamic content HTTP_Task() will use three call back
functions that the application must provide: http_get_page(), http_format_char(),
http_exec_cgi().

 http_get_page(char *fi lename) is a callback function the application must provide,
and will be called by HTTP_Task() to fi nd the requested GET/POST page. Instead
of implementing a fi le system on a device, this HTTP server expects the pages to
be stored into program memory. The http_get_page() then must fi nd the specifi ed
fi lename in ROM, and return the location in program memory. If this page is not in
ROM http_get_page() must return 0 to indicate page not found.

 http_format_char(int32 fi le, char id, char *str, int8 max_ret) is a callback function
the application must provide, and returns special formatting information for the web
pages stored in the program memory. For special formatting, use a % character,
when HTTP_Task() is serving a web page and sees a % it calls this function with
the id variable set to the formatting character. *str is where the callback function
must save the formatting result, and it should not store more than max_ret
characters to this pointer (buffer-overrun protection). File is the address in ROM of
the webpage being served, if special formatting characters need special meaning
depending on what page is being served. This function must return the number of
characters saved to *str.

 http_exec_cgi(int32 fi le, char *key, char *val) is a callback function the application
must provide, and is called with each key=value pair read in the GET/POST
request. File is the location in ROM of the webpage being served, in the case
special processing is desired, depending on what page is being served.

 http_exec_cgi() is called for each key/value pair before any web data is sent to the
web browser.

 HTML forms are used to place user input fi elds in webpages. For more help about
HTML forms, see documentation about <FORM> and <INPUT> tags in any HTML
documentation.

 The example uses GET transactions. Try this example using POST by changing
the <FORM method=GET> to <FORM method=POST> in HTML_INDEX_PAGE[].

CCS, Inc.

16 SIMPLE MAIL
TRANSFER PROTOCOL (SMTP)

 The Simple Mail Transfer Protocol, or SMTP, is the current de-facto standard mail transfer
protocol used on the Internet today. SMTP uses a simple, text-based protocol from which a
client or server can relay an e-mail message. When a client uses SMTP to send an e-mail, if
the e-mail is not destined to someone on that server it will be relayed to the next SMTP server
in a manner similar to how a real-life post-offi ce relays paper mail.

 Since SMTP uses a text based protocol, the standard telnet tool can be used as an SMTP
client. SMTP commonly uses TCP port 25. Here is an example transaction, which can be
reproduced by telneting into a SMTP server. The shaded lines are sent by the client (you),
the non-bold lines are responses sent by the SMTP server:

220 mail.host.com SMTP The 220 is the result code for service ready. Any other number is an
error. The data after the result code will be different for each server.

ehlo my.host.com Identify ourselves as an SMTP client, with this host name. Most SMTP
servers ignore the host name here.

250-parameter 1
250-parameter 2
250 parameter 3

SMTP accepts our identifi cation as a client, and responds with it’s
confi guration parameters (such as max size, MIME types, etc). 250 is
a successful error code, any other number would be an error.

mail from: me@somewhere.com Client identifi es the sender for this e-mail. Some SMTP servers will
verify that this domain exists fi rst.

250 Sender <me@somewhere.com>
Ok

SMTP accepts the sender address. 250 is a successful error code.

rcpt to: you@somewhere.com Client identifi es the recipient for this e-mail. Some SMTP servers will
verify that this domain exists fi rst.

250 Recipient
<you@somwhere.com> Ok

SMTP accepts the recipient address. 250 is a successful error code.

data Tell the SMTP server that any following data being sent is the body of
the e-mail.

354 Ok Send data ending with
<CRLF>.<CRLF>

SMTP server is ready to accept data. If you want to stop sending e-
mail you must put a period on an empty line.

From: me@somewhere.com
To: you@somewhere.com
Subject: An E-Mail

The SMTP client sends standard e-mail headers. Notice that the mail
from: and rcpt to: commands do not create the e-mail header. If you
use a different From and To address than what was specifeid in the
mail from: and rcpt to: commands many spam fi lters may delete the
e-mail as header spoofi ng is common from spammers.

Body of the email This is the body of the e-mail.

.250 Message received Message was successfully read by the server. There is no guarantee
that it will reach the recipient, however.

QUIT Gracefully terminate session with SMTP server. You could also just
close the TCP socket.

221 Goodbye Server accepts our session termination, and closes the connection.

Embedded Internet Exercise Book

 CCS has implemented an SMTP engine as an add-on to the Microchip TCP/IP stack that
will properly handle all the SMTP commands. To demonstrate this SMTP engine, look at the
example code ex16.c that is included on the Development Tools CD-Rom. Before running
this example code, look at the function MYSMTPInit() and change the IP address to the IP
address of your SMTP server. Compile and run this example on the prototyping board.

 When running and idle, the following will appear on the LCD:

SMTP Idle
Emails Sent: 0

 Pressing the button next to the potentiameter will send an e-mail using the SMTP IP address
and e-mail addresses provided in the MYSMTPInit() function. On the fi rst line, the LCD will
show the current status of the SMTP connection in progress. When completed the second
line will increment the counter of e-mail sent, or if there was an error it will display the error.

N
O

T
E

S

 SMTPConnect(*IP, port, char *from, char *to, char *subject) will initiate the SMTP
engine. If needed, it will do an ARP lookup fi rst. It will return TRUE if a socket was
created, but that does not mean a successful SMTP connection was made. from,
to and subject must be global. port is almost always 25.

 The SMTP engine can only handle one socket at a time. Therefore, it is not
possible to call a SMTPConnect() until the previous SMTPConnect() has been
disconnected. SMTPIsFree() will return TRUE if you can call SMTPConnect().

 Once SMTPConnect() is called and returned TRUE, poll SMTPIsPutReady() and
SMTPLastError(). SMTPIsPutReady() will return TRUE if a successful SMTP
connection was made and is ready for the body of the e-mail. SMTPLastError() will
return a non-zero value if there was an error creating the SMTP connection. Look
at the SMTP_EC enum in smtp.h for documentation on the error codes returned by
SMTPLastError()

 SMTPPut(char c) can be use to put a character into the body of the e-mail.
SMTPIsPutReady() must return TRUE before you use SMTPPut().

 SMTPDisconnect() will fi nish off the e-mail and close the connection. To determine
if the e-mail was accepted by the SMTP server, wait for SMTPIsFree() to return
TRUE and then check SMTPLastError() to verify that it still returns 0.

 Use the SMTP server provided by your ISP. If unknown ask the ISP. The reason
for this is that in the war on spam, almost all SMTP servers block access to clients
who are not on their network.

 Due to the war on spam, many internet service providers are placing restrictions
upon SMTP servers. Such restrictions may be authentication, sender-id, message-
id and maximum message-per-minute rate. This engine deals with none of those
restrictions. Its very likely in the future that it will be impossible for a microcontroller
to have the resources to send e-mail using SMTP.

CCS, Inc.

17 POINT TO
POINT PROTOCOL (PPP)

 Ethernet, as the physical and data layer, has been discussed in all previous chapters.
However, a more prevalent and cheaper physical layer, is plain old telephone service (POTS).
It can be utilized by using a modem and the Point-to-Point Protocol (or PPP). PPP provides a
“pipe” between two specifi c nodes, and while PPP is mostly used over modem/phone lines it
can be used over any serial link.

 PPP uses a standard framing scheme called HDLC (Highlevel Data Link Control), and the
format is as follows:

Bytes 1 1 1 0-1502 2 1

Flag
(0x7E)

Address
(0xFF)

Control
(0x03)

Payload
(Component Protocol) Checksum Flag

(0x7E)

 The Address and Control HDLC fi elds are unused in PPP, and are always fi xed to 0xFF and
0x03, respectively.

 Escape characters are used to prevent special characters, such as XON/XOFF fl ow control
or the HDLC fl ag, from interrupting the data in the HDLC frame. An escape character is used
by inserting a 0x7D and ORing the escaped character with a 0x20.

 PPP is comprised of several protocols, from which PPP acts as the framing mechanism. The
data fi eld will contain the component protocol, which itself is either a datagram or an option
negotiation for that component protocol:

Bytes 2 1 1 2 0-1496

Protocol Code ID Length Options Option Negotiation

Bytes 2 0-1500

Protocol Payload Component Datagram

 The protocol fi eld for both negotiation and data packet designate which component protocol
to use. Below are a few commonly used component protocols to esablish a PPP link
between the prototyping board and an ISP:
 0xC021 – Link Control Protocol (LCP)
 Confi gure the serial link, escape codes, max receive unit, etc.
 0xC023 – Password Authentication Protocol (PAP)
 Verify access to node using a username and password
 0x8021 – IP Control Protocol (IPCP)
 Confi gure IP header compression, IP address, etc.
 0x0021 – IP DatagramA
 Send/Receive IP Datagrams (see Chapter 8) in the HDLC data fi eld.

– or –

Embedded Internet Exercise Book

 Option Negotiation is the heart of PPP, and it allows for the two linked nodes to initiate and
establish a link using options that both nodes agree on. For example, one node may require
PAP authentication for access, so both nodes must agree upon this option before creating a
connection. During option negotiation, a node can request (REQ) an option which the other
node must not agree (NAK), not recognize (REJ), or accept the option (ACK). Looking at the
table below, the code field denotes what kind of option request/response is being made:
 REQ = 1 (ASK FOR OPTION)
 ACK = 2 (AGREE TO OPTION)
 NAK = 3 (COMPLETELY REJECT THE OPTION)
 REJ = 4 (REJECT OPTION, BUT HINT WHAT PARAMETERS WE WOULD ASK)
 TERMINATE REQ = 5
 TERMINATE ACK = 6

 Terminate REQ and Terminate ACK are special cases, and is sent when one node wishes to
terminate and close the connection gracefully.

 The ID field of the option negotiation packet is used to distinguish one packet from a previous
packet, and should be incremented with each option negotiation packet. The options data
field in the option negotiation packet (see Figure on the previous page) can contain several
individual parameter option requests:

Bytes 1 1 0-253

Type Length Data

 Type is the parameter option that is being requested/rejected/accepted, and it’s value is
dependent on the protocol being used. Length is the length of the entire option, including the
Type and Length field.

 Here is an example of LCP being negotiated between node A and node B, where Node A is
the requesting node:

Transmitting
Node

Raw Data Description

A 7E FF 03 HDLC Header

C0 21 01 01 00 11 LCP REQ ID=1 Len=11

0D 03 06 Option: Callback

03 04 C0 23 Option: PAP Authentication

crc crc 7E CRC and Stop Byte

Node A requests to enable Callback and PAP authentication.

CCS, Inc.

Transmitting
Node

Raw Data Description

B 7E FF 03 HDLC Header

C0 21 04 01 00 07 LCP REJ ID=1 Len=7

OD 03 06 Option: Callback

Crc crc 7E CRC and Stop Byte

Node B rejects the Callback option.

A 7E FF 03 HDLC Header

C0 21 01 02 00 08 LCP REQ ID=2 Len=8

03 04 C0 23 Option: PAP Authentication

Crc crc 7E CRC and Stop Byte

Having received Node B’s rejection of the Callback option, Node A sends
another option request – this time it doesn’t ask for the callback option, just
the PAP Authentication option.

B 7E FF 03 HDLC Header

C0 21 02 02 00 08 LCP ACK ID=2 Len=8

03 04 C0 23 Option: PAP Authentication

Crc crc 7E CRC and Stop Byte

Node B accepts Node A’s LCP options.

 The example shown above only shows node A making an LCP request to node B. What
is not being shown is that in the opposite direction node B is making its own requests.
Requests that were accepted in one direction may not apply in the other direction. For
example, node A may request data compression, and if node B accepts node A may send
node B compressed packets. But, node B cannot send compressed data unless node B
requested that option and node A accepted it.

 More information about component protocols and option types are out of scope for this
tutorial, for more information several books and documentation on the web can be found.

 CCS has implemented a PPP stack as an add-on to the Microchip TCP/IP stack, so users
will not need to worry about accepting/reject option requests. The PPP stack that CCS
has added will use a Hayes AT compatible modem to create a connection between the
microcontroller and an ISP, and then it will negotiate PPP to the ISP. When negotiation is
complete the microcontroller will be given a unique IP address, at which time any previous
code written using the TCP/IP stack can be used.

POINT TO
POINT PROTOCOL (PPP)17

Embedded Internet Exercise Book

 An example program has been included, on the Development Tools CD-R as ex17.c. Open
this example and modify the ISP settings (username, password and phone number) in the
function ISPInit(). After changing these values, compile and run on the prototyping board.

 This example will attempt to connect to the ISP, and on the top line of the LCD it will display
dialing. If a busy signal is received or no dial tone, an error will display that on the top line,
otherwise it will display the baud rate of the connection. It will then begin initiating a PPP
connection, which may take a few seconds. When successful, the top line of the LCD will
alternate between showing the microcontroller’s IP address and the connected baud rate.
Open a browser and go to the IP address that is displayed on the LCD. The microcontroller
will answer the HTTP request and respond with a web page that gives the ADC readings of
AN0 and AN1.

 This example should look familiar to the example in Chapter 14 – as it is the same example.
The only change is that Example 14 uses Ethernet, and this example was modifi ed to use
PPP instead. The same method to modify any other example or TCP/IP code from Ethernet
to PPP.

N
O

T
E

S

 ppp_connect(username, password, phonenumber) initiates a PPP connection.
First it will return the modem result, if it returns something other than MODEM_
CONNECTED then there was a problem dialing the phone number. If ppp_
connect() returns MODEM_CONNECTED, you must call stacktask() until ppp_is_
connected() returns TRUE.

 The username and password strings passed to ppp_connect() MUST be global
variables. The reason for this is that at any time the PPP link may need to re-
negotiate the authentication, and if so it will need access to these values.

 ppp_is_connected() returns TRUE if PPP has been negotiated and the PPP link
can be used to send IP packets. It is equivalent to the Ethernet MACIsLinked()
function.

 ppp_is_connecting() returns TRUE if the PPP task is still negotiating PPP options.
It will return FALSE once PPP has been successfully negotiated, or if it timed-out
and disconnected the link.

 ppp_disconnect() can be used to manually disconnect a PPP connection. It
will fi rst attempt to gracefully disconnect by warning the other node of the
disconnection. It will also hang-up the modem.

Book: TCP/IP Lean

By: Jeremy Bentham

Summary: An excellent book that details the internals of Ethernet, IP, ARP, UDP, TCP, PPP and
more. Its primary focus is how to develop a TCP/IP application on microcontrollers with limited
resources.

Application Note: AN833

By: Microchip

Summary: Documentation of Microchip’s TCP/IP, including example code and API specifications.

Software: Ethereal

URL: http//www.ethereal.com/

Summary: Excellent, free, open-source packet sniffing software for the computer. Can analyze
network traffic of many types: Ethernet, 802.11, IP, UDP, TCP, PPP and more. Work in Windows,
Linux, BSD Mac OS X and more.

On The Web
Comprehensive list of PICmicro®
Development tools and information

www.mcuspace.com

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

CCS, Inc.

References

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small debug
program in the chip. This is a basic debug tool that takes up some of the chip’s resources (I/O
pins and memory). An emulator replaces the chip with a special connector that connects to a unit
that emulates the chip. The debugging works in a simulator manner except that the chip has all of
its normal resources, the debugger runs faster and there are more debug features. For example
an emulator typically will allow any number of breakpoints. Some of the emulators can break on
an external event like some signal on the target board changing. Some emulators can break on
an external event like some that were executed before a breakpoint was reached. Emulators cost
between $500 and $3000 depending on the chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand alone
device programmer may be used to program all the chips. These programmers will use the .HEX
file output from the compiler to do the programming. Many standard EEPROM programmers do
know how to program the Microchip parts. There are a large number of Microchip only device
programmers in the $100-$200 price range. Note that some chips can be programmed once
(OTP) and some parts need to be erased under a UV light before they can be re-programmed
(Windowed). CCS offers the Mach X which is a stand-alone programmer and can be used as an
in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources. Some
have an ICD interface and others simply have a socket for a chip that is externally programmed.
Some boards have some advanced functionality on the board to help design complex software.
For example, CCS has a Prototyping board with a full 56K modem on board and a TCP/IP stack
chip ready to run internet applications such as an e-mail sending program or a mini web server.
Another Prototyping board from CCS has a USB interface chip, making it easy to start developing
USB application programs.

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip. A
simulator offers all the normal debug capability such as single stepping and looking at variables,
however there is no interaction with real hardware. This works well if you want to test a math
function but not so good if you want to test an interface to another chip. With the availability of low
cost tools, such as the ICD in this kit, there is less interest in simulators. Microchip offers a free
simulator that can be downloaded from their web site. Some other vendors offer simulators as a
part of their development packages.

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
 · Specify operational settings at the execution level
 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface
 · Simply point, click and program
 · Additions to HEX file organization include associating comments or a graphic image
 to a file to better ensure proper file selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics
 · Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specific driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a file list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™
 · All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help file for additional assistance.

Phone

Ethernet

RS232
C6, C7

Power
9V DC ICD

Connector

Pot A1

Pot A0

Pushbutton B0

Pushbutton B1

LED B2

LED B4

TMS320C54

