
Development Kit
For the PIC® MCU

Exercise Book

Capacitive Touch
March 2010

PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

Copyright © 2010 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.8.

15
.0

5

CCS, Inc.

1 UNPACKING AND INSTALLATION

(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

Inventory
 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must

have a spare 9-Pin Serial or USB port, a CD-ROM drive and 75 MB of disk space.

 The diagram on the following page shows each component in the Capacitive Touch kit.
Ensure every item is present.

Software
 Insert the CD into the computer and wait for the installation program to start. If your computer

is not set up to auto-run CDs, then select My Computer and double click on the CD drive.

 Click on Install and use the default settings for all subsequent prompts by clicking NEXT,
OK, CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will have
created an empty directory c:\program fi les\picc\projects that may be used for this purpose.

 Select the compiler icon on the desktop. In the PCW IDE, click Help>About and verify
a version number is shown for the IDE and PCM to ensure the software was installed
properly. Exit the software.

Hardware
 Connect the PC to the ICD(6) using the USB cable.(1) Connect the prototyping board (10) to

the ICD using the modular cable. Plug in the AC adaptor (9) to the power socket and plug it
into the prototyping board (10). The fi rst time the ICD-U is connected to the PC, Windows
will detect new hardware. Install the USB driver from the CD or website using the new
hardware wizard. The driver needs to be installed properly before the device can be used.

 The LED should be red(2) on the ICD-U to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the desktop.
Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LED should be
illuminated green. If any errors are detected, go to Diagnostic tab. If all tests pass, the
hardware is installed properly.

 Disconnect the hardware until you are ready for Chapter 3. Always disconnect the power
to the Prototyping board before connecting/disconnecting the ICD or changing the
jumper wires to the Prototyping board.

(1) ICS-S40 can also be used in place of ICD-U. Connect it to an available serial port on the PC using the 9
pin serial cable. There is no driver required for S40.

 1 Storage box
 2 Exercise booklet
 3 CD-ROM of C compiler (optional)
 4 Serial PC to Prototyping board cable
 5 Modular ICD to Prototyping board cable
 6 ICD unit for programming and debugging
 7 USB (or Serial) PC to ICD cable
 8 AC Adaptor (9VDC)
 9 Prototyping board with a PIC16LF727 microcontroller
 (See inside front and back cover for details on the board layout and schematic)

Capacitive Touch Exercise Book

1

ICD-U64

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: c:\program fi les\picc\examples\ex_stwt.c

 Scroll down to the bottom of this fi le. Notice the editor shows comments, preprocessor
directives and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a Help fi le
description for set_timer0 appears. The cursor may be placed on any keyword or built-in
function and F1 will fi nd help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various standard
cut, paste and copy functions.

 Review the editor option settings by clicking on Options>Editor Properties. The
IDE allows selection of the tab size, editor colors, fonts, and many more. Click on
Options>Toolbar to select which icons appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different

compilers for each family of Microchip parts. All the exercises in this booklet are for the
PIC16LF727 chip, a 16-bit opcode part. Make sure PCM 14-bit is selected in the drop-
down box under the Compiler tab.

 The main program compiled is always shown in the bottom of the IDE. If this is not the
fi le you want to compile, then click on the tab of the fi le you want to compile. Right click
into editor and select Make fi le project.

 Click Options>Project Options>Include Files… and review the list of directories
the compiler uses to search for included fi les. The install program should have put two
directories in this list: devices and drivers.

 Normally the fi le formats need not be changed and global defi nes are not used in these
exercises. To review these settings, click Options>Project Options>Output Files and
Options>Project Options>Global Defi nes.

 Click the compile icon to compile. Notice the compilation box shows the fi les created
and the amount of ROM and RAM used by this program. Press any key to remove the
compilation box.

CCS, Inc.

2 USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the microcontroller is used.

Identifiers that start with @ are compiler generated variables. Notice some locations are
used by more than one item. This is because those variables are not active at the same time.

 Click Compile>C/ASM List. This file shows the original C code and the assembly code
generated for the C. Scroll down to the line:
 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal. The
second instruction moves W into memory. Switch to the Symbol Map to find the memory
location where int_count is located.

 Click View>Data Sheet, then View. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files and Projects are created,
opened, or closed using this menu.

Place cursor here for slide out boxes.
All of the current project’s source and
output files can be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using
this menu.

Compiles current selected unit, does NOT link/build
into a HEX file.

Quick view of supported devices.

Compiles all units that have changed since last build,
links/builds into a HEX file.

Compiles all units regardless if they have changed since
last build, links/builds into a HEX file.

Capacitive Touch Exercise Book

#include <16lf727.h>
#device ICD=TRUE
#fuses HS,NOWDT
#use delay(INTERNAL=8mhz)

#defi ne GREEN_LED PIN_A1

void main() {
 while (TRUE) {
 output_low (GREEN_LED);
 delay_ms (1000);
 output_high (GREEN_LED);
 delay_ms (1000);
 }
}

N
O

T
E

S

 The fi rst four lines of this program defi ne the basic hardware environ-
ment. The chip being used is the PIC16LF727, running at 8MHz with
the ICD debugger.

 The #defi ne is used to enhance readability by referring to GREEN_LED
in the program instead of PIN_A5.

 The “while (TRUE)” is a simple way to create a loop that never stops.

 Note that the “output_low” turns the LED on because the other end of
the LED is +5V. This is done because the chip can tolerate more current
when a pin is low than when it is high.

 The “delay_ms(1000)” is a one second delay (1000 milliseconds).

CCS, Inc.

 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>New>Source File and enter the fi lename EX3.C

 Type in the following program and Compile.

COMPILING AND
RUNNING A PROGRAM3

 Connect the ICD to the Prototyping board using the modular cable, and connect the
ICD to the PC. Power up the Prototyping board.

 Click Debug>Enable Debugger and wait for the program to load.

 If you are using the ICD-U40 and the debugger cannot communicate to the ICD unit go
to the debug configure tab and make sure ICD-USB from the list box is selected.

 Click the green go icon:

 Expect the debugger window status block to turn yellow indicating the program is
running.

 The green LED on the Prototyping board should be flashing. One second on and one
second off.

 The program can be stopped by clicking on the stop icon:

 Modify the program to turn the green LED on for 5 seconds, then off for 5 seconds.
 Add to the program a #define macro called “delay_seconds” so the

delay_ms(1000) can be replaced with : delay_seconds(1); and
delay_ms(5000) can be: delay_seconds(5);.

Note: Name these new programs EX3A.c and EX3B.c and follow the same
 naming convention throughout this booklet.

A
B

FURTHER STUDY

Capacitive Touch Exercise Book

ICD-U64

 It is good practice to put all the hardware defi nitions for a given design into a common fi le
that can be reused by all programs for that board. Open EX3.C and drag the cursor over
(highlight) the fi rst 6 lines of the fi le. Click Edit>Paste to fi le and give it the name prototype.h.

 It is also helpful to collect a library of utility functions to use as needed for future programs.
Note that just because a function is part of a program does not mean it takes up memory.
The compiler deletes functions that are not used. Create a new fi le utility.c and the
following new function to the fi le:

void blink_led_once() {
 output_low (GREEN_LED);
 delay_ms (1000);
 output_high (GREEN_LED);
 delay_ms (1000);
}

 Click on Compile and Run the program. Check that the LED blinks the same as in
Chapter 3 program EX3.c.

 Close all fi les and click File>New>Source File and enter the fi lename EX4.c.

#include <prototype.h>
#include <utility.c>

void main() {
 while(TRUE) {
 blink_led_once();
 }
}

CCS, Inc.

PROGRAM STRUCTURE4

 Type in the following program.

N
O

T
E

S
 The Prototyping board has one momentary pushbutton that may be

used as an input to the program. The input pin is connected to a 10K
pull-up resistor to +5V. The button, when pressed, shorts the input pin
to ground. The pin is normally high while in this confi guration, but it is
low while the button is pressed.

 This program shows how to use simple C functions. The function
wait_for_one_press() will fi rst get stuck in a loop while the input pin
is high (not pressed). It then waits in another loop while the pin is low.
The function returns as soon as the pin goes high again. Note that
the loops, since they do not do anything while waiting, do not look like
much-they are a simple ; (do nothing).

 When the button is pressed once, it is common for several very quick
connect disconnect cycles to occur. This can cause the LEDs to
advance more than once for each press. A simple debounce algorithm
can fi x the problem. Add the following line between the two while
loops: delay_ms(100); The following scope picture of a button press
depicts the problem:

Modify the function in utility.c so that the LED is on for twice as long as it is off.
Create your own blink routine function in utility.c and test on the prototyping
board. Remember that “output_low” turns the LED on, not off.

A
B

FURTHER STUDY

Capacitive Touch Exercise Book

 Open EX4.C and start the debugger Debug>Enable Debugger.

 Click the reset icon to ensure the target is ready.

 Click the step-over icon twice. This is the step over command. Each click causes a
line of C code to be executed. The highlighted line has not been executed, but the line
about to be executed.

 Step over the blink _ LED _ once(); line and notice that one click executed the entire
function. This is the way step over works

 Step over until the call to blink _ LED _ once(); is highlighted. This time, instead of
step over, use the standard step icon several times and notice the debugger is now
stepping into the function.

 Click the GO icon to allow the program to run and verify that the program is running
normally. Click the stop icon to halt execution. Notice the C source line that the
program stopped on.

 In the editor, click on blink_LED_once(); to move the editor cursor to that line. Then
click the Breaks tab and click the add icon to set a breakpoint. The debugger will now
stop every time that line is reached in the code. Click the GO icon. The debugger should
now stop on the breakpoint. Repeat this a couple of times to see how the breakpoint works.
Note that the ICD with PIC16 chips only allow one breakpoint at a time.

 Click Compile>C/ASM list. Scroll down to the highlighted line. Notice that one assembly
instruction was already executed for the next line. This is another side effect of the ICD
debugger. Sometimes breakpoints slip by one ASM instruction.

 Click the step over icon a few times and note that when the list fi le is the selected window,
the debugger has executed one assembly instruction per click instead of one entire C line.

 Close all fi les and click File>New>Source File and enter fi lename EX5.c.

 Type in the following program.Type in the following program.
#include <prototype.h>
#include <utility.c>

void main() {
 int a,b,c;

 a=11;
 b=5;
 c=a+b;
 c=b-a;
 while(TRUE);
}

CCS, Inc.

 Open

DEBUGGING5

 Compile the program and step-over until the c=a+b line is executed. Click the Watch
tab, then the add icon to add a watch. Enter c or choose c from the variables from list,
then click Add Watch. The expected value is 16.

 Step-over the subtraction and notice the value of c. The int data type by default is
not signed, so c cannot be the expected -6. The modular arithmetic works like a car
odometer when the car is in reverse only in binary. For example, 00000001 minus 1 is
00000000, subtract another 1 and you get 11111111.

 Reset and again step up to the c=a+b. Click the Eval tab. This pane allows a one time
expression evaluation. Type in a_b and click Eval to see the debugger and calculate the
result. The complete expression may also be put in the watch pane as well. Now enter
b=10 and click Eval. This expression will actually change the value of B if the “keep side
effects” check box of the evaluation tab is checked. Check it and click Eval again. Step
over the addition line and click the Watch tab to observe the c value was calculated with
the new value of b.

Modify the program to include the following C operators to see how they work:
 * / % & ^
 Then, with b=2 try these operators: >> <<
 Finally, try the unary complement operator with c=~a;

Design a program to test the results of the relational operators
 < > = = !=
 by exercising them with b as 10, 11, and 12.
 Then, try the logical operators || and && with the four combinations of a=0,1
 and b=0,1. Finally, try the unary not operator with: c=!a; when a is 0 and 1.

A

A

FURTHER STUDY

Capacitive Touch Exercise Book

The Prototyping board included in this Development Kit has an external Liquid Crystal
Display (LCD) that can be used to display a large set of characters and numbers in order
to assist in the debugging of software. The LCD can also act as an inexpensive program
monitoring tool, if programmed correctly in software. This particular LCD uses seven
data I/O pins in order to communicate with the microcontroller. The following is a simple
program which outputs a traditional message on the LCD.

 Close all fi les and click File>New>Source File and enter fi lename EX6.c.
 Type in the following program:

 Click on Compile and Run the program.

 After verifying proper operation of the LCD, add the #defi ne and #include <lcd.c> lines
to the end of prototype.h.

 In the example above, the printf statement calls upon the function lcd_putc to print the
string of characters. All normal rules regarding printf still apply when writing to the LCD
using this method. Should you desire to print a single character to the LCD without using
printf, you simply use the lcd_putc function. To illustrate this, add the following line after
the printf statement, and compile and run the program:

 lcd _ putc(‘8’);

CCS, Inc.

The Prototyping board included in this Development Kit has an external Liquid Crystal

6 INTRODUCTION TO THE LCD

#include <prototype.h>
#include <utility.c>

#defi ne LCD_ENABLE_PIN PIN_C3
#defi ne LCD_RS_PIN PIN_C0
#defi ne LCD_RW_PIN PIN_C1
#defi ne LCD_DATA4 PIN_C4
#defi ne LCD_DATA5 PIN_C5
#defi ne LCD_DATA6 PIN_C6
#defi ne LCD_DATA7 PIN_C7

#include <lcd.c>

void main(void) {
 lcd_init();
 printf(lcd_putc,”Hello World”);
}

The compiler comes equipped with special characters for the LCD. ‘\f’ will
cause the LCD to clear and set the write position to the upper-left hand corner
again. ‘\n’ will set the write position to the beginning of the second line. ‘\b’
will set the write position one space back. Using these special characters, alter
the program so that “Hello” prints on the top line of the LCD, and “World” prints
on the bottom line. Then, clear the LCD and write “Hello World” on just the top
line, then just the bottom line.

A

FURTHER STUDY

N
O

T
E

S

 The LCD requires the function lcd_init() to be called in main before any
writing to the LCD can begin.

 There are two functions in addition to lcd_init() and lcd_putc which
the compiler can utilize. lcd_gotoxy(x,y) will set the write position
of the LCD to the coordinates given as x and y; for example, lcd_
gotoxy(1,1) will set the write position to the upper left-hand corner
of the LCD. This function will not clear any of the characters already
printed on the LCD, however. lcd_getc(x,y) will return the character
printed on the LCD at coordinates x,y; for example, lcd_getc(1,1) will
return the character printed at the upper left-hand corner of the LCD.

 While the LCD can be a valuable debugging tool, the required time to
write a character to the LCD is rather long (up to 2 ms or longer). It is
good programming practice to write to an LCD only when absolutely
necessary, as opposed to every cycle through a while(TRUE) loop.

Capacitive Touch Exercise Book

 Notice that the number 8 appears immediately after the “Hello World” statement. When
using lcd_putc, be sure to use apostrophes (‘ ‘) around the character to be printed.
Writing a simple decimal number with lcd_putc will result in the ASCII character for that
number to printed, instead of the number itself. For example:

 lcd_putc(52); and lcd_putc(‘4’);
 will both cause the microcontroller to write the character ‘4’ to the LCD, since the ASCII

value of the character ‘4’ is 52.

 Compile and Run the program.

*Note that multiplication requires a signifi cant amount of processing time to complete.
The number displayed on the LCD is number of clock cycles the microcontroller used to
complete the multiplication. This is number represents the same number of assembly
instructions the microcontroller would have executed in the same amount of time.

 Close all fi les and click File>New>Source File and enter name EX7_2.c

 Type in the following program:

CCS, Inc.

7 TIMERS AND INTERRUPTS
 The PIC16LF727 has three built-in timers. Each timer has a different set of features. The

following example will use TIMER0 to measure the time it takes to execute some C code.
 Close all fi les and click File>New>Source File and enter name EX7.c.

Compile and Run the program.

#include <prototype.h>

void main() {
 long time;
 long a,b,c;

 lcd_init();

 setup_timer_0(rtcc_INTERNAL|RTCC_DIV_1);
 set_timer0(0);
 a=b*c;
 time=get_timer0();
 printf(lcd_putc,”Time in ticks is\n%lu”,time);
}

Type in the following program:
#include <prototype.h>

int16 overfl ow_count=0;

#int_timer0
void timer1_isr() {
 overfl ow_count++;
}

void main () {
 setup_timer_0(rtcc_INTERNAL | RTCC_DIV_256);
 enable_interrupts(int_timer0);
 enable_interrupts(global);
 while(TRUE) {
 printf(lcd_putc,”\fOverfl ows: %lu”, overfl ow_count);
 delay_ms(10);
 }
}

N
O

T
E

S

 All of the timers on the PIC16LF727 count up and when the maximum value
is reached, the timer restarts at 0. The set_timer0(0) resets the timer to 0.
If the interrupt for timer0 AND global interrupts are enabled, an interrupt re-
quest will be generated when the timer restarts to 0 after its maximum value.

 If using RTCC_DIV_256 instead of RTCC_DIV_1, then the timer would
increment once for every 256 instruction clocks. This effectively makes
the timer count 256 times slower than the nominal rate.

 The interrupt function is designated by preceding it with #INT_TIMER1.
A number of interrupt functions can be specified by preceding each with
the proper directive like #INT_EXT for the external interrupt pin (B0) or
#INT_RDA for an incoming RS-232 character.

 An interrupt must be specifically enabled (via enable_interrupts(specific
interrupt)) AND interrupts must be globally enabled (via enable_interrupts(GLOBAL)).
The GLOBAL enable/disable controls whether any interrupts are serviced.

 If interrupts are globally disabled and an interrupt event happens, then
the interrupt function will be called when interrupts are enabled. If multiple
interrupt events of the same type happe n while interrupts are disabled,
then the interrupt function is called only once when interrupts are enabled.

 Compile and Run the program.
 *Note the relative speed at which the timer increments.

Capacitive Touch Exercise Book

 The following is a summary of the timers on the PIC16LF727 chip:

#0 Input is Instruction Clock or external pin
Range is 0-255
Input can be divided by

1,2,4,8,16,32,64,128,256
Can generate interrupt on each overflow

#1 Input is Instruction Clock or external pin
Range is 0-65535
Input can be divided by 1,2,4,8
Can generate interrupt on each overflow

#2 Input is Instruction Clock only
Range can be programmed from 0-1 to 0-255
Input can be divided by 1,4,16
Can generate interrupt on 1-16 overflows

Buzzers are a popular user interface feature. Driving a buzzer requires changing the state of
an individual pin on a regular basis. Implementing this with output_high() and output_low()
commands, however, will cause the processor to be almost completely consumed to wait
during the buzzing. A less processor-intensive method is to use the Capture/Compare/PWM
Module. This kit will focus mainly on Pulse-Width Modulation (PWM) as a way to alter the
main clock signal of the microcontroller, in order to drive external hardware which requires a
modulated signal input. When using PWM, there are two ways to alter the main clock signal:

 1. Divide the frequency of the clock (such as lowering oscillation frequency from 8MHz to 1Mhz)
 2. Change the duty cycle of signal (discrete values between 0% and 100%)
The prototype board has a small buzzer driven by the pin connected to the PWM1 module.
The next exercise will use TIMER2, which is driven by the main processor clock, to alter
the signal being applied to the buzzer; which in turn will affecting the way it sounds.

 Close all fi les and click File>New>Source File and enter fi lename EX8.c. Type in the
following program.

 The buzzer make a short sound every 1.1 seconds. The buzzer will sounds because a
voltage sensitive plate moves up or down inside the buzzer every time the output pin of
the microcontroller changes. The frequency of the sound generated is exactly equal to the
frequency at which the output pin changes.

The frequency of the sound from the buzzer can be predicted by looking at our SETUP_
TIMER_2 call. Each prescaler and count instruction divides the internal clock frequency
which drives the TIMER2. Notice that TIMER2 uses a prescaler of 16, and counts to 200
before changing the PWM output pin’s state. The instruction clock also requires 4 ticks to
execute one instruction. Since the instruction clock is operating at 8 MHz (see the #use
delay line in prototype.h), the frequency out of the PWM (and into the buzzer) is

 (8,000,000 Hz) / (16*200*4) = 625 Hz
 (Internal Clock) / (Buzzer Frequency * 4) = Prescaler * TopCount

CCS, Inc.

Buzzers are a popular user interface feature. Driving a buzzer requires changing the state of

8 PWM AND STAND-ALONE PROGRAMS

 Compile and Run the program.

following program.

Compile and Run the program.

#include <prototype.h>
#include <utility.c>

void main() {

 SETUP_TIMER_2(T2_DIV_BY_16,200,1);

 while(TRUE) {
 SETUP_CCP1(CCP_PWM);
 SET_PWM1_DUTY(402);
 delay_ms(100);
 SETUP_CCP1(CCP_OFF);
 delay_ms(1000);
 }
}

 The relative amount of time the output pin of the PWM is high versus low is known as the duty
cycle of the PWM. This is usually given as a percentage of the time the output pin is high: 0%
being always low, 100% being always high. When programming, the SET_PWM1_DUTY(x) call
allows you to set the duty cycle parameter to a 10-bit value, x. To calculate the duty cycle, divide the
parameter x by [4 * (TopCount + 1)], which is the relative length of one cycle. In our code:

 (x / [4 * (TopCount +1)]) = (402 / [4*(200+1)]) = (402 / 804) = 50%
 Therefore, the output pin is high exactly the same amount of time that it is low, and a uniform square

wave is generated. For buzzer purposes, the duty cycle will not have much impact on how the
sound is heard, but other hardware applications, including motor control, may require specific duty
cycles to overcome problems such as noise or large inductance. NOTE: any duty cycle greater
than or equal to 100% will keep the PWM output pin permanently in the HIGH state.

 Close all files and open the prototype.h file. Copy this file and remove the line:
 #device ICD=TRUE

 Name the file ‘protoalone.h’.

 Modify EX8.c to use protoalone.h.

 Compile the program, then click Tools>ICD to load the program onto the prototyping board.

 Disconnect the power from the prototyping board, then disconnect the ICD from the
prototyping board.

 Power up only the prototyping board and verify the program runs correctly.

Modify the program so that the LED turns on whenever the buzzer is sounding.
Make a version of the program that plays a variety of notes and outputs the
current frequency in Hz on the LCD. Humans can detect frequencies from
around 20-20000 Hz,so using a prescaler of 16 will drop the frequencies into
normal hearing range.

A
B

FURTHER STUDY

Capacitive Touch Exercise Book

Theory

 The PIC16LF727 contains a Capacitive Sensing Module (CSM) which, with proper hardware
and software confi guration, allow detection of changes in the capacitance of an external pad.
It is important to understand the basic theory behind the CSM and its operation in order to
use in future projects.

 The CSM when activated, turns on an oscillator consisting of a constant current source and a
 constant current sink. This results in a triangular voltage waveform when put through a capacitor.
 When the external capacitor is connected with the internal resistor, a simple relaxation oscillation

circuit is created. From basic electric circuit theory, the relative frequency of relaxation oscillator
with fi xed inputs and a fi xed resistance is based completely on the capacitor in the circuit.
For example, by changing the capacitance of the circuit (externally), in a change in the
frequency of the oscillator will occur.

 The human fi nger has dielectric properties. When a fi nger is brought near the external
capacitive pad, the dielectric properties of the fi nger interact with the electric fi eld of the
capacitor; causing the capacitor in the circuit to appear to have more capacitance than usual.

 Thus, resulting a change in the frequency in the oscillator circuit.
 One way to quantitatively measure the frequency of a digital circuit is to use the built-in
 Timer peripherals. The CSM is equipped with the option of internally connecting the output

of the oscillation circuit with the input of TIMER1. Each rising edge of the oscillating voltage
will cause the counter to increment by 1. TIMER0 can be used to simultaneously “watch” the
TIMER1 peripheral for a fi xed amount of time to determine a change in frequency. Compare
the number of ticks in TIMER1 after a fi xed period of time to the number of ticks in another
fi xed period of time.

CCS, Inc.

CAPACITIVE SENSING DESIGN THEORY9

N
O

T
E

S

 This software algorithm requires exclusive use of the TIMER1 peripheral
and therefore, TIMER1 cannot be used by any other function or subrou-
tine without causing errors in the CSM.

 While TIMER0 is used to clock the TIMER1 peripheral, it is still possible
to simultaneously use the TIMER0 ISR for a different purpose in the
main program. In this case, the CCS compiler will automatically priori-
tize the CSM ahead of the user’s commands in the ISR. If choosing to
not use the CCS library with the CSM, it is recommended that the user
functions in the TIMER0 ISR should be called after the necessary CSM
operations are executed.

 For more information on the CSM of this particular chip, reference the
PIC16F72X/PIC16LF72X data sheet, section 14.

Implementation
 The following is a software model for getting fast, reliable results from the timers based on

the previously described theory. The duties that the software must perform to effi ciently use
this peripheral include:

 • Setup timers 0 and 1
 • Initialize the CSM (start the circuit oscillating)
 • Upon each interrupt of timer0, do the following:
 · Read the value of timer1
 · Compare with a nominal threshold value
 · If less, store a key press in memory; if greater, ignore cycle
 · Monitor the next key of interest (multiplex)
 · Reset timer0 and timer1 and return
 • If a key has been pressed, effect some kind of external change (LCD, RS232, LED, etc.)
 The above algorithm gets more complex as more buttons are monitored. A signifi cant amount of

memory is required in order to compare each key to its nominal value, since the baseline reading
of key presses can change due to alterations in size and location to the capacitive pads. As such,
multiple data arrays will be required. In programs of this complexity, there is more room for errors
and improper coding. The next chapter will focus on simply displaying the value of timer1 on the
LCD in order to appreciate the sensitivity of the capacitive pads to a fi nger press.

Capacitive Touch Exercise Book

The CCS compiler includes built-in functions which greatly simplify the capacitive sensing
process. The following program, allows the microcontroller to detect presses on pads ‘0’, ‘3’,
and ‘6’, and prints the key pressed to LCD.

 Close all fi les and click File>New>Source File and enter fi lename EX11.c and type in
the following program.

CCS, Inc.

The CCS compiler includes built-in functions which greatly simplify the capacitive sensing

10 CAPACITIVE SENSING WITH
LIBRARY FUNCTIONS

 Compile and Run the program. Press the pads labeled as ‘0’, ‘3’, or ‘6’ and verify these digits
appears on the LCD.

 Reset the program and set a breakpoint on the lcd_putc(i) line. Click the GO button. Notice
that the program does not reach the breakpoint until a key has been pressed. The function
touchpad_getc() cannot return a null value and will wait until the program stores a key press
value in memory before returning. To avoid this active waiting of the microcontroller, change the
while(TRUE) loop in the program as shown below and save the program as EX11_2.

 Next, change the while(TRUE) loop in the program to avoid the active waiting of the microcontroller.
 Modify the program as shown below and save the fi le as EX11_2.c.Modify the program as shown below and save the fi le as EX11_2.c.

while(TRUE) {
 if(touchpad_hit()){
 i=touchpad_getc();
 lcd_putc(‘\f’);
 lcd_putc(i);
 delay_ms(1000);
 }
 else {
 printf(lcd_putc,”\fNo Press”);
 delay_ms(100);
 }
 }

the following program.

Compile and Run the program. Press the pads labeled as ‘0’, ‘3’, or ‘6’ and verify these digits

#include <prototype.h>
#include <utility.c>

#use touchpad(scantime=32ms,threshold=6,pin_b1=’0’,pin_d0=’3’,pin_
d1=’6’)

void main(void) {
 INT i;
 lcd_init();
 enable_interrupts(GLOBAL);

 while(TRUE) {
 i=touchpad_getc();
 lcd_putc(i);
 }
}

 The touchpad_hit() function will return true only if there is a key press in memory that has
not been called by touchpad_getc() yet. Using this function allows the microcontroller to
do other operations while waiting for a key to be pressed.

 The compiler has de-bouncing software, such that a single press only causes the LCD to print
a character once, but the threshold value in the #use touchpad directive may need adjusting
specifi c to the of hardware.

N
O

T
E

S

 In #use touchpad(options), the scantime=XXms and threshold=X com-
mands are optional. If they are not explicitly declared, the compiler defaults
scantime to 32ms and the threshold value to 6% below nominal reading.

 The scantime parameter of #use touchpad is a per key measurement.
That is, if the scan time is set to 32ms, the microcontroller will clock
TIMER1 for 32ms for each key declared in #use touchpad. In the
previous example, there are three keys being monitored, so it takes
(32ms * 3) = 96ms for the microcontroller to scan all of the keys only
once. If all 16 possible pads are being monitored, it would take (32ms *
16) = 512ms for the microcontroller to scan all of the keys one time.

 When declaring pins in #use touchpad(options), take care to
differentiate between characters and integer types. Recall that the char
value of ‘0’ has an int value of 48. Also, recall that the LCD prints char
values, not int values.

 The touchpad_getc() function returns a char value. If the receiving
memory location is declared as an int, the receiving memory location
will receive the ASCII value of the key press.

Add pins to the #use touchpad directive such that the keys ‘0’-’9’ are active,
and note the delay between when a key is pressed and when it appears.
Then, alter the scantime and threshold parameters so the reaction time is
increased without sacrifi cing accuracy.
Add conditional statements in the program that will reset the LCD when the
‘=’ key is pressed, and will have the LCD write to the bottom line when the ‘+’
key is pressed.

A

B

FURTHER STUDY

Capacitive Touch Exercise Book

The following program uses the timer0 interrupt to shift key presses into a global array
and continuously displays the entire array on the LCD.

 Close all fi les and click File>New>Source File and enter fi lename EX12.c. Type in the
following program.

 Compile and Run the program. Verify that the LCD displays contents of the character
array A and that a new key press on pads ‘0’, ‘3’, and ‘6’ shifts the entire array to the
left. Note that the pads now return the letters ‘A’, ‘B’, and ‘C’ respectively. This can be
changed in the #use touchpad directive.

CCS, Inc.

The following program uses the timer0 interrupt to shift key presses into a global array

11 ADVANCED CAPACITIVE SENSING
AND ARRAYS

following program.
#include <prototype.h>
#include <utility.c>

#use touchpad(pin_b1=’A’,pin_d0=’B’,pin_d1=’C’)

#defi ne num 8

int i;
char A[num];

#int_timer0
void timer0_isr() {
 if(TOUCHPAD_HIT())
 if(!(TOUCHPADSTATUS&0x0F00)){
 for(i=(num-1);i>0;i--)
 A[i]=A[i-1];
 A[0]=touchpad_getc();
 }
}

void main(void) {
 int j;
 for(j=0;j<num;j++)
 A[j]=’0’;

 lcd_init();
 enable_interrupts(GLOBAL);

 while(TRUE){
 lcd_putc(‘\f’);
 for(j=0;j<num;j++)
 lcd_putc(A[j]);
 delay_ms(100);
 }
}

Modify the program so that the green LED turns on when the character array is full.
Defi ne a new key such that when it is pressed during normal operation, the
entire character array is reset to ‘0’.

A
B

FURTHER STUDY

N
O

T
E

S
 A C array declared as A[8] means the valid subscripts are A[0] through A[7].
 Using the #defi ne num line near the beginning of the program allows for better

readability and easier revisions. In order to change the size of the array, only
change the number that num is defi ned to be. Without this line, changing the
size of the array would require making many replacements elsewhere in the
program.

 There is a 16-bit C variable called TOUCHPADSTATUS that the compiler
declares whenever the #use touchpad directive is used. The compiler uses this
variable for calibrating, fl agging, debouncing, and storing key presses with the
CSM. The table below shows how each bit of TOUCHPADSTATUS is used by
the compiler. As shown, the second nibble of TOUCHPADSTATUS is used for
calibrating the CSM on start-up. Until the CSM is calibrated, the following line is
needed in the TIMER0 ISR. To avoid writing to the character array while the CSM
is calibrating:

 if(!(TOUCHPADSTATUS&0x0F00))

 In addition to TOUCHPADSTATUS, there is also a large data array created and
declared by the compiler called TOUCHDATA which stores the threshold timer
values for each key. While normally hidden in the background by the compiler, it
is possible to read and write to this array, if desired.

Capacitive Touch Exercise Book

 Bit# 15 14 13 12 11 10 9 8
 Name TEST PRESS RES1 RES0 CSMC3 CSMC2 CSMC1 CSMC0

 Bit# 7 6 5 4 3 2 1 0
 Name KEY7 KEY6 KEY5 KEY4 KEY3 KEY2 KEY1 KEY0

TEST PRESS
 1 : Test mode 1 : Key is currently being pressed
 0 : Normal Running mode 0 : Key is currently not being pressed

 RES1 : 0 CSMC3 : 0
 Reserved bits, should be left as ‘0’ CSM calibration bits. Four bit number

 represents number of keys left to calibrate.
 KEY7 : 0
 ASCII value of the most recent key pressed. Value will be passed to touchpad_getc() on call.

After touchpad_getc() is executed, this buffer is cleared.

 RS-232 is a popular serial communications standard used on most PCs and many
embedded systems. Two wires are used (in addition to ground), one for outgoing data and
one for incoming data. The compiler will allow any pins to be used for RS-232, however,
the prototyping board already has an RS-232 jack connected with pins E0 and E1. Add the
following line to the end of the protoalone.h fi le:

 #use rs232 (baud=9600, xmit=PIN_E1, rcv=PIN_E0)

 Close all fi les and click File>New> Source File and enter the fi lenameile EX13.c.
Type in the following program:

 Compile and Run the program. Check the monitor tab to see the result.

 Connect the prototyping board to the PC as shown below.

CCS, Inc.

USING A RS-232 PORT12

Type in the following program:

Compile and Run the program. Check the monitor tab to see the result.

#include <protoalone.h>
#include <stdlib.h>
#include <input.c>

void main() {
 long a,b,result;
 char opr;

 setup_timer_0(RTCC_INTERNAL);
 while(TRUE) {
 printf(“\r\nEnter the fi rst number: “);
 a=get_long();

 do {
 printf(“\r\nEnter the operator (+-*/): “);
 opr=getc();
 } while(!isamong(opr,”+-*/”));

 printf(“\r\nEnter the second number: “);
 b=get_long();

 switch(opr) {
 case ‘+’ : result= a+b; break;
 case ‘-’ : result= a-b; break;
 case ‘*’ : result= a*b; break;
 case ‘/’ : result= a/b; break;
 }

 printf(“\r\nThe result is %lu “,result);
 }
}

N
O

T
E

S The basic functions for RS-232 are putc() and getc(). printf calls putc() mul-
tiple times to output a whole string and format numbers if requested. get_
long() is a function in input.c to read a long number by calling getc() many
times. See input.c for other functions such as get_int() and get_string().

 The % in the printf indicates another parameter is included in the printf
call and it should be formatted as requested. %lu indicates to format as
an unsigned long.

 getc() will cause the program to stop and wait for a character to come in
before it returns.

Modify to add the operators: % | & ^
Modify to use fl oat instead of long. You will need to do get_fl oat() instead of get_
long() and use the format specifi er %9.4f to get 4 digits after the decimal place.

A
B

FURTHER STUDY

Capacitive Touch Exercise Book

 At the PC, close the debugger window and start the program Tools>Serial Port Monitor.
Set the correct COMM port if necessary. Ensure that the monitor is set to view and send
in ASCII mode, not HEX mode.

 Power up the prototyping board and a prompt at the PC should appear. Enter a number
followed by the enter key, an operator (like +) and another number followed by enter.
Verify the result is shown correctly.

For many embedded systems applications, the processing power of the PIC16LF727 alone
may not be enough, especially when 16 capacitive touch pads are being monitored. In these
cases, it is logical to use the PIC16LF727 as a slave processor to a more powerful master controller.
Two steps are needed to set up a master-slave computer system: 1) create a way for the slave
to interrupt the master, and 2)set up a method for communication between slave and master.
To interrupt a master microcontroller, have one port pin change states whenever a key
has been pressed. Externally connect this pin to the external interrupt pin of the master
microcontroller. If microcontroller also has communication based interrupts, those could
be used as well to interrupt and transmit data simultaneously.
Transferring data between the master and slave can be more complicated. Fortunately, most
microcontrollers and compilers (including the CCS compiler) allow for several communication
possibilities, including AUSART (which RS-232 is derived from), SPI, I2C, and multiple
user defi ned I/O pins which can be used to generate one’s own communication protocol.
Chapter 13 experimented with RS-232, In which both the PC and microcontroller communicated,
in order to accomplish the task of creating a simple calculator. Expanding on that method,
by connecting two processing systems together.

 Close all fi les and click File>New>Source File and enter fi lename EX14.c. Type in the
following program.

CCS, Inc.

For many embedded systems applications, the processing power of the PIC16LF727 alone

13 CAPACITIVE SENSING AND RS-232

#include <protoalone.h>
#include <utility.c>
#include <stdlib.h>
#include <input.c>

#use touchpad(pin_b1=’0’,pin_d0=’3’,pin_d1=’6’)

void main() {
 int i;
 char check;

 enable_interrupts(GLOBAL);

 printf(“\r\nConnected”);

 while(TRUE) {
 i = touchpad_getc();
 do {
 printf(“\r\nData ready, send ‘1’ to receive: “);
 check=getc();
 } while(!isamong(check,”1”));

 printf(“\r\n%c”,i);
 }
}

N
O

T
E

S

 This program did not undertake how the PC should handle incoming data.
When programming a master microcontroller, the send/receive process should
mirror the send/receive process of the slave. That is, if one device is using putc(),
the other device should be using getc() at the same time, and vice versa.

 This program contains a great deal of text being sent from the PIC16LF727
to the PC. In a real application where the master chip has no user
interface and will automatically receive data, this text is not required,
and the data transaction can occur at a much faster rate.

 The exercises in this kit were designed to wait for a ready signal (sending a ‘1’
to the microcontroller), to ensure that the receiving computer is ready for the
data being transmitted. A PC is virtually always ready to send/receive data,
but a master microcontroller may need to clear memory buffers, fi nish another
instruction, etc., before being ready to receive. Using this method ensures that
the key press is not lost simply because the master was not ready to receive.

 The prototyping board has RS-232 mapped to pins E0 and E1. The PIC16LF727
has available hardware and interrupts for RS-232, but only if the original
pins C6 and C7 are used. As such, the prototyping board cannot
be interrupted by RS-232 and must anticipate incoming data. When
designinga circuit, using RS-232, pins C6 and C7 will allow access to
RS-232 interrupts and buffering hardware.

In a similar fashion to EX12.C, buffer (store in order) the key presses on the PIC16LF727
in a data array. Once four key presses are stored in the array, announce a buffer overfl ow
on RS-232 and transmit all four key presses upon a ready signal from the PC.

B Modify EX12A.C so that the green LED turns on when a key is pressed and the
buzzer turns on when the buffer is full.

A

FURTHER STUDY

 Compile the program.

 Load the program onto the chip and open the Serial Input/Output Monitor. Verify that
pressing ‘0’, ‘3’, or ‘6’ causes a prompt to show up in the monitor, and consequently
sending a ‘1’ from the PC will result in the pressed number to show in the monitor.

Capacitive Touch Exercise Book

 RS-232 printf statements can be a good tool to help debug a program. It does, however,
require an extra hardware setup to use. If the ICD is being used as a debug tool, the
compiler can direct putc() and getc() through the debugger interface to the debugger
screen. Add the following line to the end of the prototype.h fi le:

 #use rs232 (DEBUGGER)

 Modify EX13.C to create EX15.C by changing protoalone.h to prototype.h.”
 Compile and load the program into the Prototyping board.
 Click GO, then click the Monitor tab.
 A prompt should appear. Enter some data to confi rm that the program is working.
 Stop and reset the program.
 In PCW click Project>Open all fi les as an easy way to get all the project fi les

open in IDE.
 Click the stdlib.h tab, and set a breakpoint in the atol() function on the line:
 result = 10*result + (c - ‘0’);

 This function is called from get_long() to convert a string to a number. This line is
executed for each character in the string.

 Click the debugger Break Log tab, check the LOG box, set the breakpoint as 1 and
expression as result. Result is the value of the number being converted.

 Click GO, then click the Monitor tab and enter 1234 enter.
 Click the Log tab and notice that each time the breakpoint was hit the value of the result

variable was logged. In this case the breakpoint did not cause a full stop of the program,
it just logged the value of the requested expression and kept on going.

 Stop the program.
 Delete the breakpoint by selecting the breakpoint and click on the icon.
 Uncheck the LOG box under the log tab.
 Set a breakpoint on the last printf() in the program.
 Enter watches for a, b and result.
 Click GO and enter two numbers and +.
 When the break is reached click on the snapshot icon:
 Check Time and Watches, uncheck everything else.
 If a printer is connected to the PC select Printer, otherwise select Unique fi le.
 Click on the Now button.
 Notice the requested data (time and watches) are either printed or written to a fi le as

requested.

CCS, Inc.

ADVANCED DEBUGGING14

The debugger Eval tab can be used to evaluate a C expression. This
includes assignments. Set a break before the switch statement and use the
Eval window to change the operator being used. For example, type a + but
change it to a - before the switch.
Set a break on the switch statement and when reached, change to the
C/ASM view and single step through the switch statement. Look up the
instructions executed in the PIC16LF727 data sheet to see how the switch
statement is implemented. This implementation is dependent on the case
items being close to each other. Change * to ~ and then see how the
implementation changes.

A

B

FURTHER STUDY

 Click on the snapshot icon again and this time select Append to file, put in a filename of
EX15.TXT and check After each single step.

 Check Last C line executed in addition to the Time and Watch selected already and
close the snapshot window.

 Reset and then Step Over until the final printf() is executed. Enter the data when requested.
 Use File>Open>Any File to find the file EX15.TXT (by default in the Debugger Profiles

directory) after setting the file type to all files.
 Notice the log of what happened with each step over command.
 Uncheck the After each single step in the snapshot window.
 Clear the breakpoints and set a breakpoint on the switch.
 Click Reset then Go and enter the requested data using the + operator.
 When the break is reached click on the Peripherals tab and select Timer 0.
 Shown will be the registers associated with timer 0. Although this program does not use

timer 0 the timer is always running so there is a value in the TMR0 register. Write this
value down.

 Clear the breakpoints and set a breakpoint on the final printf().
 Click GO.
 Check the TMR0 register again. If the new value is higher than the previous value then

subtract the previous value from the current value. Otherwise, add 256 to the current
value and then subtract the previous value (because the timer flipped over).

 The number we now have is the number of clock ticks it took to execute the switch and
addition. A clock tick by default is 0.5ms. Multiply your number of ticks by 0.5 to find the
time in ms. Note that the timers (and all peripherals) are frozen as soon as the program
stops running.

Capacitive Touch Exercise Book

This exercise will combine almost all of the previous chapters into one working project to
illustrate how using the built-in peripherals can result in a complex, but elegant, system.

 Add the following functions to utility.c:

 Close all fi les and click File>New>Source File and enter fi lename EX14.c.

 Type in the following program. Note that #fuse touchpad directive should be all on one line.

 continued...

CCS, Inc.

This exercise will combine almost all of the previous chapters into one working project to

15 CAPACITIVE TOUCH PROJECT EXAMPLE

Add the following functions to utility.c:

Close all fi les and click File>New>Source File and enter fi lename EX14.c.

void result_print(long number, long & a, long & b, char & opr, int1 &
calc)
{
 lcd_putc(‘\f’);
 printf(lcd_putc,”\f%lu”,number);
 a=number;
 b=0;
 opr=’0’;
 calc=0;
}

void send_data(long number)
{
 SETUP_CCP1(CCP_PWM);
 printf(“\r\n%lu”,number);
 delay_ms(50);
 SETUP_CCP1(CCP_OFF);
}

Type in the following program. Note that #fuse touchpad directive should be all on one line.

 continued... continued...

#include <protoalone.h>
#include <utility.c>
#use touchpad(scantime=1ms,pin_a5=’X’,pin_b5=’R’,pin_b2=’+’,pin_b3=’-
’,pin_b4=’=’,pin_d3=’8’,
pin_d5=’5’,pin_d7=’2’,pin_d4=’7’,pin_d6=’4’,pin_b0=’1’,pin_
b1=’0’,pin_d0=’3’,pin_d1=’6’,pin_d2=’9’)

#int_timer0
void timer0_isr() {
 if(TOUCHPADSTATUS&0x4000) {
 output_low(GREEN_LED);
 output_low(PIN_C2);
 }
 else {
 output_high(GREEN_LED);
 output_high(PIN_C2);
 }
}

 continued...

 ...continued

Capacitive Touch Exercise Book

 continued... continued...

void main(void) {
 long i,inti,a=0,b=0,temp=0,result;
 char opr=’0’;
 int1 calc=0,opr_press=0,reset=0,send=0;

 lcd_init();
 SETUP_TIMER_2(T2_DIV_BY_16,255,1);
 enable_interrupts(GLOBAL);
 delay_ms(500);

 while(TRUE) {
 opr_press=0;
 while(!touchpad_hit());
 i=touchpad_getc();
 inti=i-48;

 switch(I){
 case ‘+’ : opr=’+’; opr_press=1; break;
 case ‘-’ : opr=’-’; opr_press=1; break;
 case ‘R’ : reset=1;
 case ‘X’ : send=1;
 case ‘=’ : if(opr!=’0’){calc=1;} break;
 default : if(opr!=’0’){temp=(b*10); b=temp+inti; break;}
 else{temp=(a*10); a=temp+inti; break;}
 }

 if(reset==1){
 result_print(0,a,b,opr,calc);
 reset=0;
 send=0;
 }

 if((calc==0)&&(opr==’0’)&&(opr_press!=1))
 printf(lcd_putc,”\f%lu”,a);
 if((calc==0)&&(opr!=’0’)&&(opr_press!=1))
 printf(lcd_putc,”\f%lu”,b);
 if(opr_press==1)
 printf(lcd_putc,”\f%c”,opr);
 if(send==1){
 send_data(a);
 send=0;

 Compile the program.

 Load the program onto the chip and Run the program.

 The prototyping board acts as an integer calculator with the keys ‘0’ through ‘9’ and ‘+’, ‘-’,
and ‘=’ active. When the ‘=’ key is pressed, the result of the computation is stored as the
fi rst integer in a new computation.

 Press the “User Defi ne” key after performing a computation. This key empties all calculator
memory and returns the calculator to its initial state.

 Open the Serial Monitor from CCS IDE and ensure it is in ASCII mode. Pressing the
“Calculator” button on the device should print the current value of the fi rst integer in
the computation (which is also the result of the last computation if the ‘=’ has just been
pressed), and listen for a short beep.

 Pressing and holding any of the active keys will cause the green LED to turn on and a clicking
sound. Releasing the key will cause the green LED to turn off and another clicking sound.

Compile the program.

 }
 if(calc==1){
 switch(opr){
 case ‘+’ : result=a+b;
 result_print(result,a,b,opr,calc);
 break;
 case ‘-’ : result=a-b;
 result_print(result,a,b,opr,calc);
 break;
 }
 }
 }
}

...continued

Modify the program so that the “Button Test” key automatically takes the
square root of the current number.
Note: the square root of a number will be truncated to an integer.

 (Hint, use the built-in C function sqrt() and the header fi le math.h).

A

FURTHER STUDY

CCS, Inc.

15 CAPACITIVE TOUCH PROJECT EXAMPLE
(CONT.)

Capacitive Touch Exercise Book

MIGRATING TO YOUR OWN HARDWARE16
 The following diagram is a somewhat minimal circuit for a PIC18F4520
 Notice this chip has two +3.3V and ground connections. Some chips have only one of

each. A 0.1µf capacitor mounted near the chip is a good idea and one on either side of
the chip is even better. This will reduce noise both to and from the chip.

 The PIC16LF727 circuit shown below relies on the internal oscillator present in the chip
itself. There are multiple clock settings available for the PIC16LF727. Reference the
PIC16F727/PIC16LF727 data sheet for the available options.

 Troubleshooting
 The MCLR pin must be in a high state for the chip to run. Note the Prototyping board

schematic uses a pushbutton to ground this pin and to reset the chip.

 Most problems involve the clock. Make sure the confi guration fuses are set to the proper
oscillator setting. In the above case, for an internal oscillator operating at 8 MHz, HS
(High-Speed) is the proper setting.

 If the program does not seem to be running, verify 3.3 Volts on the MCLR pin and the
two power pins.

 Isolate hardware problems from fi rmware problems by running a program with the
following at the start of main () and check B0 with a logic probe or scope:
 while(TRUE) {
 output_low (PIN_B0);
 delay_ms (1000);
 output_high (PIN_B0);
 delay_ms (1000);
 }

 The In-Circuit Progamming/Debugging Interface
 To program and/or debug in circuit, two I/O pins (B6, B7) are reserved. If debugging is

not to be done, then these pins may also be used in the target circuit. However, care
must be taken to ensure the target circuit has high impedance during programming.

 The MCLR pin is also used by the programmer and for debugging. Note that during
programming, the voltage on this is 13 volts. The 47K resistor to 3.3V is suffi cient
isolation for the 13V. However, if anything else is connected to the MCLR pin, be sure the
13V will not damage or interfere.

 The ICD unit requires Vdd from the target. It is easiest to power up the target normally and
then, connect the target board Vdd to the ICD for power. The ICD-S40 is powered by this
pin (5V) and the ICD-U40 uses it to pull up the signals (3V-5V).

 The E2 pin is optional and is not used for programming. However, the monitor feature
of the debugger does use E2. It is possible to program and debug (without monitor) and
allocate E2 to the target hardware. In this case do not connect B3 to the ICD connector.

 Note that the ICD to target cable reverses the pins so the MCLR signal is ICD pin 6 and
that connects to the target pin 1.

1 2 3 4 5 6

Vdd

Vdd

47K

MCLR

PGD (usually B7)
PGC (usually B6)
B3 (optional)

VSS

Target ICD connector
Looking into the connector

PIC

CCS, Inc.

MIGRATING TO YOUR OWN HARDWARE
(CONT.)16

E2

Capacitive Touch Exercise Book

 Layout Hints
 When designing a capacitive pad, the focus should be on the size of the pad, not the

shape. A larger pad will have a greater sensitivity than a smaller pad. Also, sufficient
space should be left between the pads to avoid false presses. Experimentally, a separation
of approximately 5mm was found to be adequate.

 When designing the physical layout of the pads on the PCB, be sure to keep the traces
and pads away from ground. Being too close to a ground trace or plane will change the

 capacitive properties of the pad, and will reduce or eliminate the functionality of the board.
 If possible, keep the area above and below the sensors and sensor traces on the PCB

clear of any high frequency devices or wires, even if they are shielded or insulated. If this
is not possible, it is good design practice to keep the sensor traces perpendicular to any
high frequency traces, in order to minimize high frequency interference.

 The covering plate over the printed circuit board (PCB) is ideally an insulating, strong
dielectric material. The higher the dielectric constant of the material, the better the
sensitivity will be. Conductive materials should not be used, as they will ruin the
capacitive properties of the plates.

 Sandwiching the PCB and covering plate is appropriate, but not necessary. Since the
capacitive sensing module relies on electric field interactions, contact is not a requirement.
However, the closer a finger gets to the capacitive pad, the more responsive the sensor
will be. This development kit has fixed sensors on the PCB, but this not a requirement.
The sensors may be detachable from the PCB, and jumpers may be run from the
microcontroller to the sensors.

CCS, Inc.

This booklet is not intended to be a tutorial for the PIC16LF727 or the C programming
language. It does attempt to cover the basic use and operation of the development tools.
There are some helpful tips and techniques covered, however, this is far from complete
instruction on C programming. For the reader not using this as a part of a class and without
prior C experience the following references should help.

Exercise
PICmicro® MCU C: An introduction to
Programming the Microchip PIC® in

CCS by Nigel Gardner

The C Programming Language by
Brian W. Kernighan and

Dennis M. Ritchie (2nd ed.)
3 1.1 The structure of C Programs

1.2 Components of a C Program
1.3 main()
1.5 #include
1.8 constants
1.11 Macros
1.13 Hardware Compatibility
5.5 While loop
9.1 Inputs and Outputs

1.1 Getting Started
1.4 Symbolic Constants
3.1 Statements and Blockx
3.5 Loops
1.11 The C Preprocessor

4 1.7 Variables
1.10 Functions
2.1 Data Types
2.2 Variable Declaration
2.3 Variable Assignment
2.4 Enumeration
3.1 Functions
3.4 Using Function Arguments
4.2 Relational Operators
5.7 Nesting Program Control Statements
5.10 Switch Statement

1.2 Variables and Arithmetic Expr
2.1 Variable Names
2.2 Data Types and Sizes
2.3 Constants
2.4 Declarations
2.6 Relational and Logical Operators
3.4 Switch
1.7 Functions
1.8 Arguments
4.1 Basics of Functions

5 4.3 Logical Operators
4.4 Bitwise Operators
4.5 Increment and Decrement
5.1 if Statements
5.2 if-else Statements
9.3 Advanced BIT Manipulation

3.2 if-Else
2.8 Increment and Decrement Ops
2.90 Bitwise Operators

6 4.1 Arithmetic Operators 2.5 Arithmetic Operators

7 9.5 A/D Conversion 3.3 Else

References

8 5.4 For Loop
6.1 One-Dimensional Arrays

1.3 The For Statement
1.6 Arrays
2.10 Assignments Operators and
Exp

10
1.6 printf Function
9.6 Data Comms/RS-232

1.5 Character Input and Output
2.6 Loops-Do-While
7.1 Standard Input and Output
7.2 Formatted Output - printf

11 6.2 Strings
6.4 Initializing Arrays
8.1 Introduction to Structures

7.9 Character Arrays
6.1 Basics of Structures
6.3 Arrays of Structures

13 9.4 Timers

14 2.6 Type Conversion
9.11 Interrupts

2.7 Type Conversions

16 9.8 SPI Communications
17 9.7 I2C Communications

18 5.2 ? Operator 2.11 Conditional Expressions
19 4.6 Precedence of Operators 2.12 Precedence and Order Eval

Comprehensive list of PIC® MCU
Development tools and information

www.mcuspace.com

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update
Page

www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

On The Web

Capacitive Touch Exercise Book

CCS, Inc.

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small
debug program in the chip. This is a basic debug tool that takes up some of the chip’s
resources (I/O pins and memory). An emulator replaces the chip with a special connector
that connects to a unit that emulates the chip. The debugging works in a simulator manner
except that the chip has all of its normal resources, the debugger runs faster and there are
more debug features. For example an emulator typically will allow any number of breakpoints.
Some of the emulators can break on an external event like some signal on the target board
changing. Some emulators can break on an external event like some that were executed
before a breakpoint was reached. Emulators cost between $500 and $3000 depending on the
chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand
alone device programmer may be used to program all the chips. These programmers will
use the .HEX file output from the compiler to do the programming. Many standard EEPROM
programmers do know how to program the Microchip parts. There are a large number of
Microchip only device programmers in the $100-$200 price range. Note that some chips
can be programmed once (OTP) and some parts need to be erased under a UV light before
they can be re-programmed (Windowed). CCS offers the Mach X which is a stand-alone
programmer and can be used as an in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources.
Some have an ICD interface and others simply have a socket for a chip that is externally
programmed. Some boards have some advanced functionality on the board to help design
complex software. For example, CCS has a Prototyping board with a full 56K modem on
board and a TCP/IP stack chip ready to run internet applications such as an e-mail sending
program or a mini web server. Another Prototyping board from CCS has a USB interface chip,
making it easy to start developing USB application programs.

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip.
A simulator offers all the normal debug capability such as single stepping and looking at
variables, however there is no interaction with real hardware. This works well if you want to
test a math function but not so good if you want to test an interface to another chip. With the
availability of low cost tools, such as the ICD in this kit, there is less interest in simulators.
Microchip offers a free simulator that can be downloaded from their web site. Some other
vendors offer simulators as a part of their development packages.

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
 · Specify operational settings at the execution level
 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface
 · Simply point, click and program
 · Additions to HEX file organization include associating comments or a graphic image
 to a file to better ensure proper file selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics
 · Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specific driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a file list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™
 · All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help file for additional assistance.

E0

LCD
Port C

RS-232
E1, E0LED A1

D4 D3 D2

D1D5D6

B0

B4

B3

B2
A5

A4

B5

D7

B1

D0

Buzzer
C2

9V
DC

ICD
ConnectorPIC16LF727

MAX232A 3.3V DC
Regulator

Front side

Back side

