
Development Kit
For the PIC® MCU

Exercise Book

CAN Bus 24
March 2010

PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

Copyright © 2010 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.

1 UNPACKING AND INSTALLATION

Inventory
 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must

have a spare 9-Pin Serial or USB port, a CD-ROM drive and 75 MB of disk space.

 The diagram on the following page shows each component in the CAN Bus 24 kit.
Ensure every item is present.

Software
 Insert the CD into the computer and wait for the installation program to start. If your computer is

not set up to auto-run CDs, then select My Computer and double-click on the CD drive.

 Click on Install and use the default settings for all subsequent prompts by clicking NEXT,
OK, CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will
have created an empty directory c:\program fi les\picc\projects that may be used for
this purpose. However, the example fi les can be found on the compiler CD-ROM, located
in the directory D:/CCS\CAN Bus 24 Exercise Book.

 Select the compiler icon on the desktop. In the PCW IDE, click Help>About and verify
a version number is shown for the IDE and PCD to ensure the software was installed
properly. Exit the software.

Hardware
 Connect the PC to the ICD(4) using the USB cable.(1) Connect the prototyping board (8) to

the ICD using the modular cable. Plug in the DC adaptor (7) to the power socket and plug
it into the prototyping board (8). The fi rst time the ICD-U is connected to the PC, Windows
will detect new hardware. Install the USB driver from the CD or website using the new
hardware wizard. The driver needs to be installed properly before the device can be used.

 The LED should be red(2) on the ICD-U to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the desktop.
Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LED should be
illuminated green. If any errors are detected, go to Diagnostic tab. If all tests pass, the
hardware is installed properly.

 Disconnect the hardware until you are ready for Chapter 3. Always disconnect the power
to the Prototyping board before connecting/disconnecting the ICD or changing the
jumper wires to the Prototyping board.

(1) ICS-S40 can also be used in place of ICD-U. Connect it to an available serial port on the PC using the 9
pin serial cable. There is no driver required for S40.

(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

CCS, Inc.

1 Storage box

2 Exercise booklet

3 CD-ROM of C compiler (optional)

4 Two Serial PC to Prototyping Board Cables

5 Modular ICD to Prototyping board cable

6 ICD unit for programming and debugging

7 USB (or Serial) PC to Prototyping board cable

 8 AC Adaptor (9VDC)

 9 CAN Bus 24 Prototyping board

1

ICD-U64

CAN Bus 24 Exercise Book

1

ICD-U64

2 USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: c:\program fi les\picc\examples\ex_stwt.c

 Scroll down to the bottom of this fi le. Notice the editor shows comments, preprocessor
directives and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a Help fi le
description for set_timer0 appears. The cursor may be placed on any keyword or built-in
function and F1 will fi nd help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various standard
cut, paste and copy functions.

 Review the editor option settings by clicking on Options>Editor Properties. The IDE
 allows selection of the tab size, editor colors, fonts, and many more. Click on Options>Toolbar

to select which icons appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different

compilers for each family of Microchip parts. The exercises in this booklet are for the
PIC24HJ256GP610 and dsPIC30F4012 chips, 24-bit opcode parts.. Make sure PCD 24
bit is selected in the drop-down box under the Compiler tab.

 The main program compiled is always shown in the bottom of the IDE. If this is not the
fi le you want to compile, then click on the tab of the fi le you want to compile. Right click
into editor and select Make fi le project.

 Click Options>Project Options>Output Files… and review the list of directories the
compiler uses to search for included fi les. The install program should have put two
directories in this list to point to the device: .h fi les and the device drivers.

 Normally the fi le formats need not be changed and global defi nes are not used in these
exercises. To review these settings, click Options>Project Options>Output Files and
Options>Project Options>Global Defi nes.

 Click the compile icon to compile. Notice the compilation box shows the fi les created
and the amount of ROM and RAM used by this program. Press any key to remove the
compilation box.

CCS, Inc.

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the micro-controller

is used. Identifiers that start with @ are compiler generated variables. Notice some
locations are used by more than one item. This is because those variables are not active
at the same time.

 Click Compile>C/ASM List. This file shows the original C code and the assembly code
generated for the C. Scroll down to the line:
 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal. The
second instruction moves W into memory. Switch to the Symbol Map to find the memory
location where int_count is located.

 Click View>Data Sheet, then View. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files and Projects are created,
opened, or closed using this menu.

Place cursor here for slide out boxes.
All of the current project’s source and
output files can be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using
this menu.

Compiles current selected unit, does NOT link/build
into a HEX file.

Quick view of supported devices.

Compiles all units that have changed since last build,
links/builds into a HEX file.

Compiles all units regardless if they have changed since
last build, links/builds into a HEX file.

CAN Bus 24 Exercise Book

CAN BUS PROTOTYPING BOARD
OVERVIEW3

 The CCS CAN Bus 24 prototyping board has a CAN bus with four nodes on the same
board. A block diagram is within the front cover of this booklet. The four independent
nodes are as follows:

NODE A - PIC24HJ256GP610
 This node features a Microchip PIC24HJ256GP610 chip. This chip has two built-in ECAN

bus controllers. There is also an I/O block that provides access to spare I/O pins on the
PIC. The pinout is as follows:

+3.3 E4 E2 G14 G12 E0 A6 D6 D4 D12 D2 D0 C14 D10 D8 A14 G

+3.3 E5 E3 G15 G13 E1 A7 D7 D5 D13 D3 D1 C13 D11 D9 A15 G

The following I/O features are also a part of NODE A:
Three LEDs (Red, Yellow, Green)

 LED is lit by outputting a LOW to the I/O pin
One push-button

 I/O pin reads LOW when the button is pressed
Pot to provide an analog voltage source

 0 Volts full counterclockwise, 3.3 Volts full clockwise
RS-232 port

NODE B - dsPIC30F4012
 This node features a Microchip dsPIC30F4012 chip which is connected to an external

MCP2515 CAN bus controller. This scheme could be used with any PIC microcontroller.

The following I/O features are also a part of NODE B:
Three LEDs (Red, Yellow, Green)

 LED is lit by outputting a LOW to the I/O pin
One push-button

 I/O pin reads LOW when the button is pressed
Pot to provide an analog voltage source

 0 Volts full counterclockwise, 5 Volts full clockwise
RS-232 port

Programs may be downloaded and optionally debugged using the ICD connector.

CCS, Inc.

NODE C - “Dumb” I/O Unit
 This node features a Microchip MCP25050 chip. This chip is pre-programmed with

address information and provides CAN bus access to the eight I/O pins. The following
items are connected to the I/O pins:

Three LEDs (Red, Yellow, Green)
 LED is lit by outputting a LOW to the I/O pin

Three push-buttons
 I/O pin reads LOW when the button is pressed

Pot to provide an analog voltage source
 0 Volts full counterclockwise, 5 Volts full clockwise

RS-232 port
This chip may be programmed by removing it from the socket and using the Pro Mate II
from Microchip to load in the address information.

NODE D - “Dumb” 7 Segement LED
 This node features a Microchip MCP25050 chip. This chip is pre-programmed with

address information and provides CAN bus access to the eight I/O pins. The I/O pins are
connected to a 7-segment LED. This allows a number to be displayed via the CAN bus.
A LOW on the I/O pin lights the segment. For example, outputting a 0xC0 in the GP port
will light a 0. A 0xF9 will light a 1.

 This chip may be programmed by removing it from the socket and using the Pro Mate® II
from Microchip to load in the address information.

N
O

T
E

S Both Node C & D use a Microchip MCP25050 CAN Bus chip.

 This chip is a complete CAN Bus Node that allows eight general input or
output pins, up to four A/D converter inputs and two PWM outputs

 This chip can be confi gured by programming an internal EEPROM with
the addresses and modes of operation.

 The chip can also be programmed over the CAN Bus.

CAN Bus 24 Exercise Book

4 COMPILING AND
RUNNING A PROGRAM

 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>New>Source File and enter the fi lename EX4.C

 Type in the following program and Compile.

#include <24HJ256GP610.h>
#device ICD=TRUE
#fuses HS,NOLVP,NOWDT,
#use delay(clock=20M)

#defi ne GREEN_LED PIN_A5

main ()
{
 while(TRUE)
 {
 output_low(GREEN_LED);
 delay_ms(1000);
 output_high(GREEN_LED);
 delay_ms(1000);
 }
}

N
O

T
E

S

 The fi rst four lines of this program defi ne the basic hardware environment.
The chip being used is the PIC24HJ256GP610, running at 20MHz with
the ICD debugger.

 The #defi ne is used to enhance readability by referring to GREEN_
LED in the program instead of PIN_A5.

 The “while (TRUE)” is a simple way to create a loop that never stops.

 Note that the “output_low” turns the LED on because the other end
of the LED is +3.3V. This is done because the chip can tolerate more
current when a pin is low than when it is high.

 The “delay_ms(1000)” is a one second delay (1000 milliseconds).

CCS, Inc.

 Connect the ICD to the Prototyping board using the modular cable, and connect the ICD to
the PC. Power up the Prototyping board.

 Click Debug>Enable Debugger and wait for the program to load.

 If you are using the ICD-U and the debugger cannot communicate to the ICD unit go to
the debug configure tab and make sure ICD-USB from the list box is selected.

 Click the green go icon:

 Expect the debugger window status block to turn yellow indicating the program is
running.

 The green LED on the Prototyping board should be flashing. One second on and one
second off.

 The program can be stopped by clicking on the stop icon:

ICD-U64

CAN Bus 24 Exercise Book

 SIMPLE 4 NODE EXAMPLE:
 Node A: Speed detector

 Every 100ms sends a frame with identifi er 1 and data indicating the vehicle speed.
 Node B: Speedometer display

 Looks only for identifi er 1 data on the bus. Takes the data and displays it on a
 digital display.

 Node C: Cruise control panel
 Pressing the SET button sends an identifi er 2 frame.
 Pressing the OFF button sends an identifi er 3 frame.
 Neither frame has data.

 Node D: Cruise control module
 Module turns on with an identifi er 2 frame and off with an identifi er 3 frame. The
 module uses data from identifi er 1 frames to adjust the vehicle speed.

 This is not a command/response type of protocol. Nodes that have something to say will
say it. Nodes that need to know something will wait for what is needed. A higher level
protocol can be implemented to provide more control. Node C can actually control how
Node D works. If a node needs a certain type of data, it can post a request on the bus for
a frame with a particular identifi er. The node responsible for that identifi er will respond. A
system design should assign a given identifi er (or set of identifi ers) to only one node.

 BASIC FRAME FORMAT:

 See Chapter 6 for the Extended Format.

1 11 1 2 4 0-64 Bits 16 2 3 3

Start Data/Request Data Length
(Bytes)

End

Address Reserved
00

Data CRC ACK Silence

CAN BUS OVERVIEW5

CCS, Inc.

 GENERAL RULES:
 All nodes on the bus verify the frame. If any node detects an error, that node asserts

a NACK. When any node asserts a NACK for a frame, all nodes must ignore the
frame, even if the node did not find an error in the frame. The sender re-transmits
NACKed frames.

 A node that NACKs a lot of messages or has a lot of messages NACKed is put on
probation (Error Passive state). In this state, the node’s activity is restricted. If the
problem persists, the node must stop all bus transmission and ignore all incoming
packets. This rule is self-enforced by each node keeping local statistics.

 A node does not start transmitting unless the bus is quiet for three bit times. If two
nodes start a frame at the same time, one node will bow out while the identifier is
being transmitted. The node to drop out will be the one that first tries to send a 1-bit,
when the other sends a 0. The 0 is dominant and the sender of the 1 will realize there
is a collision. This means lower numbered identifiers have a higher priority.

 The CAN bus permits an alternate format message with a 29 bit identifier. All the
examples we use will be with an 29 bit identifier. Frames with 11 and 29 bit identifiers
can co-exist on the same bus.

 PHYSICAL:
 There is no universal standard for the physical CAN Bus. It requires an open drain

type of bus. It could be a single wire, fiber optic or two wire differential bus. The
latter is the physical bus used on the CAN Bus 24 Prototyping board. The Philips
PCA82C251 chips are used to interface the bus to the TTL controllers. This complies
with ISO standard 11898 for use in Automotive and Industrial applications

 The bit rate can be as fast as one million bits per second.
 The start of frame bit is used by the receiver to determine the exact bit time.
 Whenever a transmitter on the bus sends five identical bits, it will send an extra

bit with the reverse polarity. This is referred to as a stuffed bit. The receiver will
ignore the stuffed bits. If a receiver detects six or more bits that are the same, it is
considered an automatic error.

CAN Bus 24 Exercise Book

6 SIMPLE PIC18 TRANSMITTER

#include <24HJ256GP610.h>
#fuses HS,NOWDT
#use delay(clock=20M)

#defi ne CAN_BRG_PRESCALAR 4
#defi ne CAN_BRG_PHASE_SEGMENT_1 2
#defi ne CAN_BRG_PHASE_SEGMENT_2 2
#defi ne CAN_BRG_SYNCH_JUMP_WIDTH 0
#defi ne CAN_BRG_PROPAGATION_TIME 0

#include <can-PIC24.c>

#defi ne WRITE_REGISTER_D_ID 0x400

void write_7_segment(int8 value){
 const int8 lcd_seg[10]={ 0x40,0x79,0x24,0x30,0x19,
 0x12,0x02,0x78,0x00,0x10};
int8 buffer[3];

buffer[0]=0x1E; //addr of gplat
buffer[1]=0x7F; //mask
buffer[2]=lcd_seg[value];
can_putd(WRITE_REGISTER_D_ID, buffer, 3, 1, TRUE, FALSE);
}

void main()
{
 int i=0;

 can_init(); //initializes can

 can_enable_b_transfer(TRB0); //enables buffer 0 in transmit mode

 can_putd(0x100,0,0,1,TRUE,FALSE); //send an on-bus message
 //to wake up mcp250x0’s
 delay_ms(1000); //wait for node d to power-up
 while(TRUE)
 {
 write_7_segment(i);
 delay_ms(1000);
 if(++i==10)
 i=0;
 }
}

CCS, Inc.

 Click File> New> Source File and enter the fi lename EX6.c.Type in the following program:

1 11 1 1 18 1 2 4 0-64 16 2 3 3
SRRStart

Address

1 to Indicate
Extended Reserved

Data
Request Data Length

Data

CRL EWD

ACK Silence

N
O

T
E

S
 The #defi ne CAN_BRG_PRESCALAR, #defi ne CAN_BRG_PHASE_

SEGMENT_1, #defi ne CAN_BRG_PHASE_SEGMENT_2, #defi ne CAN_
BRG_SYNCH_JUMP_WIDTH, and #defi ne CAN_BRG_PROPAGATION_
TIME are used to setup the PIC24HJ256GP610 ECAN module to a bit
time of 125000 bits per second.

 The include fi le “can-PIC24.c” has the functions required to interface to
the PIC24 ECAN Bus controller.

 The call to can_init() starts the interface.

 The call to can_enable_b_transfer enables buffer 0 as a transmit buffer.

 This program is designed to send data to Node D. The identifi er for Node D is
programmed as 0x400. The MCP25050 device accepts a three byte command.

 The can_putd functions have the following parameters:
 - Identifi er
 - Data pointer
 - Number of data bytes
 - Priority (0-3) determines the order messages are sent
 - Flag to indicate 29 bit identifi er
 - Flag to indicate if this is a data frame (FALSE) or request for frame (TRUE)
 This call query up a frame for transmission on the bus.

 The MCP250xx units require one error-free message after power-up to
switch to normal state. The fi rst CAN_putd, to 0x100, sends an empty
message which takes the MCP250xx from power-up to normal.

Before Moving On:
 Copy the lines in this example before “void main() {“ into an include fi le named CCSCANA.C.

Future examples will add to this fi le and build a library of functions specifi c to the CAN Bus
24 Prototyping board.

Extended Format (29 Bit ID)

 Compile the program. Load into Node A, and run the program.

 This program should display 0-9 on the 7-segment LED.

CAN Bus 24 Exercise Book

CCS, Inc.

DEBUGGING7
 Open the code for chapter 6, add #device ICD =TRUE, and start the debugger

Debug>Enable Debugger.

 Click the reset icon to ensure the target is ready.

 Click the step-over icon . This is the step over command. Each click causes a line of
C code to be executed. The highlighted line has not been executed, but the line about to
be executed.

 Step over the can _ init; line and notice that one click executed the entire function.
This is the way step over works. Click step over on
delay=ms(1000);. and notice the debugger stops when the function terminates.

 Click the Watch tab, then the add icon to add a watch. Enter i or choose i the
variables from list, then click Add Watch. Notice the value shown. Continue to step
over through the loop a few more times and notice the count watch increments.

 Step over until the call to write _ 7 _ segment(i); is highlighted. This time, instead of
step over, use the standard step icon several times and notice the debugger is now
stepping into the function.

 Click the GO icon to allow the program to run. Click the stop icon to halt
execution. Notice the C source line that the program stopped on.

 In the editor, click on write _ 7 _ segment(i); to move the editor cursor to that line.
Then click the Breaks tab and click the add icon to set a breakpoint. The debugger
will now stop every time that line is reached in the code. Click the GO icon. The
debugger should now stop on the breakpoint. Repeat this a couple of times to see how
the breakpoint works.

 Click Compile>C/ASM list. Scroll down to the highlighted line. Notice that one assembly
instruction was already executed for the next line. This is another side effect of the ICD-S
debugger. Sometimes breakpoints slip by one ASM instruction.

 Click the step over icon a few times and note that when the list fi le is the selected
window, the debugger has executed one assembly instruction per click instead of one
entire C line.

 Close all fi les and start a new fi le EX7.C as follows:

CAN Bus 24 Exercise Book

 Compile the program and step-over until the c=a+b is executed. Add a watch for c and
the expected value is 16.

 Step-over the subtraction and notice the value of c. The int data type by default is
not signed, so c cannot be the expected –6. The modular arithmetic works like a car
odometer when the car is in reverse only in binary. For example, 00000001 minus 1 is
00000000, subtract another 1 and you get 11111111.

 Reset and again step up to the c=a+b. Click the Eval tab. This pane allows a one time
expression evaluation. Type in a+b and click Eval to see the debugger and calculate the
result. The complete expression may also be put in the watch pane as well. Now enter
b=10 and click Eval. This expression will actually change the value of B if the “keep side
effects” check box of the evaluation tab is checked. Check it and click Eval again. Step
over the addition line and click the Watch tab to observe the c value was calculated with
the new value of b.

#include <24J250GP610.h>
#device ICD=TRUE

void main() {
 int a,b,c;

 a=11;
 b=5;
 c=a+b;
 c=b-a;
 while(TRUE);
}

Modify the program to include the following C operators to see how they work:
* / % & ^
Then, with b=2 try these operators: >> <<
Finally, try the unary complement operator with: c=~a;
Design a program to test the results of the relational operators:
< > = = !=
by exercising them with b as 10, 11, and 12.
Then, try the logical operators || and && with the four combinations of a=0,1
and b=0,1.
Finally, try the unary not operator with: c=!a; when a is 0 and 1.

A

B

FURTHER STUDY

USING THE MCP250XX
FOR OUTPUT8

 The MCP250xx parts used on Nodes C and D allow for discrete input, output and analog input.
These parts have internal registers that set the device ID, the directions of the pins, values
of the outputs, scheduling information for outgoing frames, and more. These registers are
initialized by programming the part on a Microchip Pro Mate II. The registers can also be read
and modifi ed at run time.

 The MCP250xx part for Node D has been programmed with a base ID of 0x400. The low three
bits of the ID specify a function. For example, 0x400 is a write-register command and 0x404 is a
write-confi guration command. Table 4-2 in the data sheet explains the identifi er usage.

 The write-register command has three bytes of data namely, a register, mask, and value.
The value is written to the specifi ed register changing only the bits specifi ed in the mask. For
example, in the previous program, a frame was sent with ID 0x400 and data 0x1E, 0x7F, 0x40.
0x1E is the output latch for the GP pins. 0x7F caused GP7 to be unchanged (connected to
decimal point). The value 0x40 puts a low on pins GP0 to GP5 and a high on GP6. Note that
the registers listed in the data sheet table 3-1 use addresses for the internal EEPROM. The
RAM addresses are 0x1C higher.

 Example:
Send a frame with ID 0x400 and data 0x1E, 0x80, 0x00 to turn on the DP

 0x400 -- Node D
 0x1E -- Output Latch register
 0x80 -- Only change Bit 7
 0x00 -- All zeros (only Bit 7 relevant) A 0 or low lights the segment
 Compile and Run the example. Verify that the DP is on.
 Node C has three LEDs: Red (GP1), Yellow (GP2) and Green (GP3). Add the following

function to CCSCANA.C:function to CCSCANA.C:
#defi ne WRITE_REGISTER_C_ID 0x300

enum colors {RED=0,YELLOW=1,GREEN=2};

void write_c_led(colors led, short on) {
 int8 buffer[3];

 buffer[0]=0x1E;
 buffer[1]=0x02<<led;

 if(on)
 buffer[2]=0;
 else
 buffer[2]=0xff;
 can_putd(WRITE_REGISTER_C_ID, buffer, 3, 1, TRUE, FALSE); }

CCS, Inc.

 Click File> New > Source File> and enter fi lename EX8A.C

 Type in the following program:

 Click Compile and load the program into Node A.

 The program should display 0-9 on the LED and light the green, yellow and red LEDs on
Node C, if, according to the value, is >1, >4, >7 respectively.

#include “CCSCANA.c”

void main()
{
 int i=0;

 can_init(); // always initialize the can

 can_enable_b_transfer(TRB0); //enable buffer 0 as transmit buffer
 can_enable_b_transfer(TRB1); //enable buffer 1 as transmit buffer
 can_enable_b_transfer(TRB2); //enable buffer 2 as transmit buffer

 can_putd(0x100,0,0,1,TRUE,FALSE); //send an on-bus message
 //to wake up mcp250x0’s
 delay_ms(1000); //wait for node c to power-up
 while(TRUE)
 {
 write_7_segment(i);
 delay_ms(1000);
 if(++i==10)
 i=0;

 write_c_led(GREEN, i>1);
 write_c_led(YELLOW, i>4);
 write_c_led(RED, i>7);
 delay_ms(10);
 }
}

CAN Bus 24 Exercise Book

9 USING THE MCP250XX
FOR INPUT

 The MCP250xx part used on Node C has been programmed to send a frame whenever
one of the pushbuttons change value (GP4-GP6).

 The following program will read CAN bus messages looking for that specifi Node C ID. It
will then light a LED depending on the button pressed.

 Add this line to ccsana.c:
#defi ne NODE_C_PUSHBUTTON_ID 0x303

 Click on File> New> Source File and enter the fi lename EX9.c.

 Type in the following program.Type in the following program.Type in the following program.

#include <ccscana.c>

void main() {
 int8 buffer[8],rx_len;
 struct rx_stat rxstat;
 int32 rx_id;

 can_init(); // always initialize the can

 can_enable_b_transfer(TRB0); //enable buffer 0 as transmit buffer
 can_enable_b_transfer(TRB1); //enable buffer 1 as transmit buffer
 can_enable_b_transfer(TRB2); //enable buffer 2 as transmit buffer

 can_putd(0x100,0,0,1,TRUE,FALSE); //send an on-bus message
 //to wake up mcp250x0’s
 delay_ms(1000); //wait for node c to power-up

 while(TRUE) {
 if (can_kbhit()) {
 if(can_getd(rx_id, &buffer[0], rx_len, rxstat))
 if (rx_id == NODE_C_PUSHBUTTON_ID) {
 write_c_led(YELLOW, bit_test(buffer[0],4));
 write_c_led(GREEN, bit_test(buffer[0],5));
 write_c_led(RED, bit_test(buffer[0],6));
 }
 }
 }
}

CCS, Inc.

 Click Compile and run the program.

#include <30F4012.h>
#fuses PR,FRC_PLL16,NOWDT
#use delay(clock=117.92M)
#use rs232(baud=9600,UART1A)

#include “can-mcp2510.c”

#defi ne RED_LED PIN_E1
#defi ne YELLOW_LED PIN_E2
#defi ne GREEN_LED PIN_E4
#defi ne WRITE_REGISTER_C_ID 0x300

void main ()
{
 int32 rx_id;
 int8 rx_len,buffer[8];
 struct rx_stat rxstat;
 int1 a,b;

 a = b = FALSE;

 can_init ();

 while (TRUE)
 {
 if (can_getd (rx_id , &buffer [0] , rx_len , rxstat))
 {
 if (rx_id == WRITE_REGISTER_C_ID && buffer [0] == 0x1e)
 {
 if (rx_id == WRITE_REGISTER_C_ID && buffer [0] == 0x1e)
 {
 if (buffer [1] & 4)
 a = buffer [2];
 if (buffer [1] & 8)
 b = buffer [2];

 output_bit(RED_LED,!(a==b));
 output_bit(YELLOW_LED,!(b==TRUE && a==FALSE));
 output_bit(GREEN_LED,!(a==TRUE && b==FALSE));
 }
 }
 }
 }
}

 The write_c_led function calls send a frame to Node C to light a LED. We will now add a
program to Node B to look for this same data and perform the same action at Node B.

 Click on File> New> Source File> and enter the fi lename EX9A.C.

 Type in the following program:

CAN Bus 24 Exercise Book

 Compile and load into Node B.

10 USING THE MCP250XX FOR ANALOG
INPUT AND SCHEDULING DATA

 The MCP25050 can be confi gured for up to four analog inputs. The A/D converter is
10 bits (0-1023). The following program makes a request for the ID with A/D results 10
times per second, then waits for the frame to be sent with that ID. The following example
clearly shows these features, however, it is not recommended for a real application. This
program will hang if the MCP25050 does not answer.

 Click on File> New> Source File> and enter the fi lename EX10.C.

 Type in the following program:

#include <ccscana.c>

void main() {
 int1 waiting;
 int8 buffer[8],rx_len;
 struct rx_stat rxstat;
 int32 rx_id;
 int16 ad_val;

 can_init(); // always initialize the can

 can_enable_b_transfer(TRB0);

 can_putd(0x100,0,0,1,TRUE,FALSE); //send an on-bus message
 //to wake up
mcp250x0’s
 delay_ms(1000); //wait for node c to power-up

 while(TRUE) {
 delay_ms(100);
 can_putd(WRITE_REGISTER_C_ID, 0, 8, 1, TRUE, TRUE);
 waiting=TRUE;
 while(waiting) {
 if (can_kbhit())
 if(can_getd(rx_id, &buffer[0], rx_len, rxstat))
 if (rx_id == WRITE_REGISTER_C_ID) {
 write_7_segment((unsigned int8)buffer[2]/26);
 waiting=false;
 }
 }
 }
}

CCS, Inc.

 Compile and load into Node A. Test the program by turning the Node C pot. Node A
should use the A/D reading to display a number 0-9 on the Node D LED.

 The rate the data is updated to the display is determined by the delay_ms line. Try a
delay_ms(1000) to get a feel for how that lag works. Then try a delay_ms(1).

 The settings on the MCP25050 have been governed by what was pre-programmed into
the EEPROM. In this next program, the preprogrammed settings will be changed. This
chip has the capability to send certain messages when specifi c, one-time events happen
or when events happen, on a regular basis. The chip will be programmed to send out the
analog frame roughly 10 times per second.

 Add #defi ne NODE_C_SCHEDULED 0x301 to CCSCANA.C.

 Click on File> New> Source File> and enter the fi lename EX10A.C.

 Type in the following program:
#include <ccscana.c>

void main() {
 int8 buffer[8],rx_len;
 struct rx_stat rxstat;
 int32 rx_id;

 can_init(); // always initialize the can

 can_enable_b_transfer(TRB0);

 can_putd(0x100,0,0,1,TRUE,FALSE); //send an on-bus message
 //to wake up mcp250x0’s
 delay_ms(1000); //wait for node c to power-up

 buffer[0]=0x2C;
 buffer[1]=0xFF;
 buffer[2]=0xD7; // Sched ON, For READ ADC,
clock *4096 *16 * 7
 can_putd(WRITE_REGISTER_C_ID, buffer, 3, 1, TRUE, FALSE);

 while(TRUE) {
 if (can_kbhit()) {
 if(can_getd(rx_id, &buffer[0], rx_len, rxstat)) {
 if (rx_id == NODE_C_SCHEDULED) {
 write_7_segment((unsigned int8)buffer[2]/26);
 }
 }
 }
 }
}

CAN Bus 24 Exercise Book

 Compile and load into Node A.

11 A CAN BUS MONITOR

 The following program is intended for Node B. It will take all frames from the CAN bus
and send them over a RS-232 link. A PC must be connected to the RS-232 port to view
the data. Use the Serial Port Monitor program to view the data on the RS-232 port.

 Click File> New> Source File> and enter the fi lename EX11.C.

 Type in the following:

#include <30F4012.h>
#fuses PR,FRC_PLL16,NOWDT
#use delay(clock=117.92M)
#use rs232(baud=9600,UART1A)

#include <can-mcp2510.c>

void main() {
 int32 rx_id;
 int8 i, rx_len, buffer[8];
 struct rx_stat rxstat;

 can_init(); // always initialize the can

 while(TRUE) {
 if (can_kbhit()) {
 if(can_getd(rx_id, &buffer[0], rx_len, rxstat)) {
 printf(“%LX: (%U) “,rx_id,rx_len);
 if (!rxstat.rtr) {
 for(i=0;i<rx_len;i++)
 printf(“%X “,buffer[i]);
 }
 if (rxstat.rtr) {printf(“ R “);}
 if (rxstat.err_ovfl) {printf(“ O “);}
 if (rxstat.inv) {printf(“ I “);}
 printf(“\r\n”);
 }
 }
 }
}

 Compile and load this program into Node B. Load the EX8A.C program into Node A.

 Notice the CAN bus activity between Nodes A and C are mentioned and reported over
the RS-232 port.

CCS, Inc.

Sample Output:

00000300: (8) R
00000401: (0)
00000301: (0)
00000303: (2) 40 3E
00000300: (3) 1E 04 FF
00000300: (3) 1E 08 FF
00000303: (2) 40 3C
00000300: (3) 1E 04 FF
00000300: (3) 1E 08 FF

CAN Bus 24 Exercise Book

12 ADVANCED DEBUGGING

 RS-232 printf statements can be a good tool to help debug a program. It does, however,
require an extra hardware setup to use. If the ICD is being used as a debugger the
compiler can direct putc() and getc() through the debugger interface to the debugger
screen. Change the RS232 line from Chapter 11 to the following:
 #use rs232 (DEBUGGER, xmit = PIN_B3, rcv = PIN_B3)

 and add #device ICD=TRUE.
 Compile and load the program into Node B.
 Verify that userstream enabled is set to True on Debug Confi gure tab.
 Click GO, then click the Monitor tab.
 Data should appear. Confi rming that the program is working.
 Stop and reset the program.
 Set a breakpoint on the line:

if(!rxstat.rtr){

 Click the debugger Break Log tab, check the LOG box, set the breakpoint as 1 and
expression as rxstat.rtr. Result is the value of the number being converted.

 Click GO, then click the Log tab and notice that each time the breakpoint was hit the value
of the rxstat.rtr variable was logged. In this case the breakpoint did not cause a full stop
of the program, it just logged the value of the requested expression and continued on.

 Stop the program.
 Delete the breakpoint by selecting the breakpoint and click on the icon.
 Uncheck the LOG box under the log tab.
 Set a breakpoint on the last printf() in the program.
 Enter watches for rxstat.rtr, rxstat.err_ovfl , and rxstat.inv..
 Click GO.
 When the break is reached click on the snapshot icon:
 Check Time and Watches, uncheck everything else.
 If a printer is connected to the PC select Printer, otherwise select Unique fi le.
 Click on the Now button.
 Notice the requested data (time and watches) are either printed or written to a fi le as

requested.
 Click on the snapshot icon again and this time select Append to fi le, put in a fi lename of

EX12.TXT and check After each single step.

CCS, Inc.

 Check Last C line executed in addition to the Time and Watch selected already and
close the snapshot window.

 Reset and then Step Over until the final printf() is executed.
 Use File>Open>Any File to find the file EX12.TXT (by default in the Debugger Profiles

directory) after setting the file type to all files.
 Notice the log of what happened with each step over command.
 Uncheck the After each single step in the snapshot window.
 Click Reset then Go.
 When the break is reached click on the Peripherals tab and select Timer 0.
 Shown will be the registers associated with timer 0. Although this program does not use

timer 0 the timer is always running so there is a value in the TMR0 register. Write this
value down.

 Clear the breakpoints and set a new breakpoint.
 Click GO.
 Check the TMR0 register again. If the new value is higher than the previous value then

subtract the previous value from the current value. Otherwise, add 256 to the current
value and then subtract the previous value (because the timer flipped over).

 The number we now have is the number of clock ticks it took to execute the switch and
addition. A clock tick by default is 0.2ms. Multiply your number of ticks by 0.2 to find the
time in ms. Note that the timers (and all peripherals) are frozen as soon as the program
stops running.

The debugger Eval tab can be used to evaluate a C expression. This
includes assignments. Set a break before the switch statement and use the
Eval window to change the operator being used. For example, type a + but
change it to a - before the switch.
Set a break on the switch statement and when reached, change to the
C/ASM view and single step through the switch statement. Look up the
instructions executed in the PIC16F876A data sheet to see how the switch
statement is implemented. This implementation is dependent on the case
items being close to each other. Change * to ~ and then see how the
implementation changes.

A

B

FURTHER STUDY

CAN Bus 24 Exercise Book

CCS, Inc.

13 DATA FILTERING

 The previous program recognizes that the processor must spend time reading every
frame on the CAN bus. This processing time is spent even though that node only has
interest in one message type. With a large number of nodes on the CAN bus, this can
cause considerable wasted processing time. The solution is to get the CAN bus controller
hardware to fi lter the data and only bother the microcontroller with data that is of interest.
The following are several popular methods for fi ltering.

BCAN – Basic CAN
 The system is designed such that various bits in ID are used to group common

frames together. A mask and reference ID are programmed into the CAN bus
controller. If (FRAME_ID & MASK) == REF_ID, the frame is saved for the
microcontroller; otherwise it is discarded. It is common in a BCAN controller to
assign a priority to outgoing frames. This way as the controller waits for bus time
messages can be sorted.

 Advanced variations of BCAN can allow multiple masks and reference IDs to be
specifi ed.

 BCAN is the scheme used on the Microchip CAN controllers. Microchip has two
buffers. One allows a mask and two reference IDs. The other allows a mask and
four reference IDs.

FCAN – Full CAN
 A list of all possible IDs of interest to the microcontroller is programmed into

the CAN controller. A buffer is allocated in the controller for each ID. The
microcontroller can then poll for data by checking buffers of interest or program
certain IDs to generate an interrupt. The same buffer scheme is used for
outgoing frames. The FCAN controller can handle requests for a particular ID
without microcontroller intervention.

 Consider the previous program. If we had a FCAN controller then instead of
waiting for a message and then acting on it the software could just request the
last frame for a given ID and use the data. The same data might be used over
and over until it is replaced.

 Advanced variations of FCAN allow BCAN like masks to be applied to buffers.

CAN Bus 24 Exercise Book

 DCAN – Direct CAN
This is a hybrid approach with BCAN-like masks and reference IDs, FCAN-like
individual receive buffers, and a BCAN-like transmit buffer.

 TTCAN – Time Triggered CAN
The bus bandwidth is split into time slots. Specifi c frame IDs are assigned to certain
timeslots. This limits the frequency for the data and helps nodes to know when to be
looking for data.

 The following program will set up fi ltering on the Node B data monitoring program. We
will set the mask and reference ID to only monitor data to Node D.

 Load EX8A.C into Node A.

 Open EX11.C add the following after the can_init() line and save as EX13.C

 can_set_mode(CAN_OP_CONFIG); //must be in confi g mode
 //before params can be set
 can_set_id(RX0MASK,0xFF00,TRUE);
 can_set_id(RX0FILTER0,0x400,TRUE);
 can_set_id(RX0FILTER1,0x400,TRUE);
 can_set_id(RX1MASK,0xFF00,TRUE);
 can_set_id(RX1FILTER2,0x400,TRUE);
 can_set_id(RX1FILTER3,0x400,TRUE);
 can_set_id(RX1FILTER4,0x400,TRUE);
 can_set_id(RX1FILTER5,0x400,TRUE);

 can_set_mode(CAN_OP_NORMAL);

 Compile EX13.C and load into Node B. Notice that only CAN messages sent to Node D
are reported over the RS232 port.

 The newer version of Microchip’s CAN module is known as the Enhanced Controller Area
Network or simply ECAN. This newer module can be found on the PIC24HJxxxGP5xx,
PIC24HJ256GP610, dsPIC33FJxxxGP7xx, dsPIC33FJxxxGP8xx, dsPIC33FJxxxMC5xx,
dsPIC33FJxxxMC7xx, and dsPIC33FJxxxMC8xx families of microcontrollers. The CAN
Bus 24 board uses the PIC24HJ256GP610. The ECAN module is completely backwards
compatible with the original CAN module, however, it offers many new features which
include:
 Up to 32 buffers capable of handling eight bytes of data. Of which the fi rst 8 buffers

can be used for either transmitting or receiving.
 16 programmable fi lters.
 Three programmable masks.
 Buffers can be set to receive in FIFO mode.
 Automatic RTR response function for all eight transmit buffers.

 The PIC24 and dsPIC33 ECAN Modules are capable of using up to 32 buffers each
capable of handling eight bytes of data. The size of the buffer that the module uses can
be set in three ways.

 1. By default the PIC24 and dsPIC33 CAN driver, can-PIC24.c, is designed to
 use 32 buffers.
 2. The number of buffers can be changed by adding one of the following lines

 before the #include <can-PIC24.C> line in your main program.
 #defi ne CAN_BUFFER_SIZE 32
 #defi ne CAN_BUFFER_SIZE 24
 #defi ne CAN_BUFFER_SIZE 16
 #defi ne CAN_BUFFER_SIZE 12
 #defi ne CAN_BUFFER_SIZE 8
 #defi ne CAN_BUFFER_SIZE 6
 #defi ne CAN_BUFFER_SIZE 4
 3. The number of buffers can be changed by adding the function can_set_
 buffer_size(x) after the can_init() function in your main program with x being
 32, 24, 16, 12, 8, 6, or 4.
 By design the PIC24 and dsPIC33 ECAN modules can only use 32, 24, 16, 12, 8, 6, or 4

buffers. If another number is used in methods 2 and 3, the ECAN driver will default the
number of buffers to 32.

CCS, Inc.

14 PIC24 AND DSPIC33 ECAN MODULES

15
 Both the PIC24 and dsPIC33 ECAN modules have up to eight programmable buffers.

These buffers, as their names imply, can be used to either transmit or receive data across
the CAN bus. In order to set the functionality of a buffer, the can_ enable_b_transfer, and
the can_enable_b_receiver, functions can be used. The values of the parameters are
actually binary fl ags making it simpler to just use the defi ned labels TRB0 – TRB7 where
B0 is the zeroth buffer. Below are some examples of how these functions might be used.

PROGRAMMABLE BUFFERS

 can_enable_b_transfer(TRB0); // enables TRB0 as transmitter

 can_enable_b_receiver(TRB5); // enables TRB5 as receiver

 On reset, all of the programmable buffers are set to receive data. Therefore, the last
example above would only be needed if the buffer was previously set as a transmit buffer.

15 PROGRAMMABLE BUFFERS

CAN Bus 24 Exercise Book

CCS, Inc.

16
 Transmitting and receiving with ECAN is almost completely the same as with CAN. The

basic can_getd and can_putd functions can still be used to transfer data and logical
functions such as can_kbhit() can still be used to test if data has been received. As noted
in the last chapter, in order to use the programmable buffers as transmit buffers, they
must be set using the appropriate functions as all of the programmable buffers default to
receive on reset.

 Click File> New> Source File> and enter fi lename EX16.C.

 Type in the following program:

TRANSMITTING AND
RECEIVING DATA WITH ECAN

#include <30F4012.h>
#fuses FRC,FRC _ PLL16,NOWDT
#use delay(clock=117.92M)
#use rs232(baud=9600,UART1A)

#include <can-mcp2510.c>

void main()
{
 int32 rx _ id;
 int8 rx _ len;
 struct rx _ stat stat;
 int8 data[8]={7,6,5,4,3,2,1,0};
 int8 receive[8];

 can _ init(); // always initialize the can

 while(TRUE)
 {
 if(can _ kbhit())
 {
 can _ getd(rx _ id,receive,rx _ len,stat);
 printf(“Data has been received\n\r”);
 can _ putd(0x600,data,8,3,TRUE,FALSE);
 printf(“Data has been sent\n\r”);
 }
 else
 {
 printf(“no data found\n\r”);
 }
 delay _ ms(3000);
 }
}

 Click Compile and load into Node B.

CAN Bus Exercise BookCAN Bus Exercise Book

#include “CCSCANA.c”

void main ()
{
 int32 rx _ id;
 int8 rx _ len,i;
 struct rx _ stat stat;
 int8 data[8]={15,14,13,12,11,10,9,8};
 int8 receive[8];

 can _ init(); // always initialize the can

 can _ enable _ b _ transfer(TRB0);

 while(TRUE)
 {
 for(i=0;i<8;i++)
 {
 printf(“%i “,data[i]);
 }
 printf(“\n\rIs being placed on the bus with id 0x00000500\n\r\n\r”);

 can _ putd(0x500,data,8,3,TRUE,FALSE);

 while(!can _ kbhit()); // wait for a response

 can _ getd(rx _ id,receive,rx _ len,stat);

 for(i=0;i<8;i++)
 {
 printf(“%i “,receive[i]);
 }
 printf(“\n\rWas received with id 0x%Lx\n\r\n\r”,rx _ id);

 delay _ ms(3000);
 }
}

 This program is a simple echo program, it enters an infi nite loop and then tests to see
if there is data waiting in any of the buffers. If there is, it then loads that data, prints a
statement acknowledging that it has loaded the data and then puts some different data
onto the bus. After acknowledging that the data has been sent, the if statement exits, and
there is a three second delay before the cycle starts again.

 Add this line to ccsana.c:
 #use rs232(baud=9600, UART1)
 The following program will send the fi rst program some data and listen for a response.
 Click File> New> Source File> and enter fi lename EX16A.C
 Type in the following program:

CCS, Inc.

 Click on compile and load into Node A.

 The following is sample output from node A.
 15 14 13 12 11 10 9 8
 Is being placed on the bus with id 0x00000500

 7 6 5 4 3 2 1 0
 Was received with id 0x00000600
 There are certain instances in which the program may only need to access the transmit

buffer once every few seconds; and, therefore will only ever use one transmit buffer.
There are functions included in the ECAN device library that will allow the user to set up
a specifi c transmit register.

 Replace the following line of code:
 can_putd(0x500,data,8,3,TRUE,FALSE);
 with this.
 can_trb0_putd(0x500,data,8,3,TRUE,FALSE);
 This will attempt to place the data into the zeroth transmit register. If the buffer happens

to be transmitting or full, the function will return false otherwise it will return true. Each
buffer has a function associated with it. These functions are as follows.

 can_trb0_putd
 can_trb1_putd
 can_trb2_putd
 can_trb3_putd
 can_trb4_putd
 can_trb5_putd
 can_trb6_putd
 can_trb7_putd
 These eight functions will write to the programmable buffers. It should be noted again,

that in order to use these functions, each associated buffer must be set to transmit mode.
 The purpose of these functions is mainly to reduce the amount of program memory

dedicated to placing data on the bus. In the case of the original CAN bus, there were only
three buffers to check, however, now there are eight. If only one transmit register is needed, it
is much more effi cient not to test each buffer and simply write to the buffer that is to be used.

17 USING FILTERS

CAN Bus Exercise Book

#include <30F4012.h>
#fuses FRC,FRC _ PLL16,NOWDT
#use delay(clock=117.92M)
#use rs232(baud=9600,UART1A)

#include <can-mcp2510.c>

void main()
{
 int8 data[8]={7,6,5,4,3,2,1,0};

 can _ init(); // always initialize the can

 while(TRUE){
 can _ putd(0x600,data,8,3,TRUE,FALSE);
 delay _ ms(1000);
 can _ putd(0x700,data,8,3,TRUE,FALSE);
 delay _ ms(1000);
 can _ putd(0x800,data,8,3,TRUE,FALSE);
 delay _ ms(1000);
 can _ putd(0x900,data,8,3,TRUE,FALSE);
 delay _ ms(1000);
 }
}

 Recall that the PIC24 and dsPIC33 ECAN modules have 16 fi lters and 3 masks. Each
fi lter can be associated to mask 0, mask 1, mask 2 or no mask, and each fi lter can be
associated to buffers 0-14 or the FIFO buffer. The mask register is used to determine
which bits of the incoming ID the fi lter should be applied two. Therefore, if the mask had
a value of 0x01, only the least signifi cant bit would have the fi lter applied to it. The fi lter is
used as a reference to determine which IDs to accept and which to reject. If, for instance,
the fi lter was 0xFF, only numbers with the value of 0xFF would be accepted, unless the
mask only applied that fi lter to certain bits. In this case, the bits that the fi lter was applied
to would need to be high in order to be accepted by the fi lter.

 Also note that many fi lters can be associated with a single buffer, but multiple buffers can
not be associated with the same fi lter.

 The steps then for setting up fi lters on the PIC24 and dsPIC33 are as follows.
 1.Load masks and fi lters with desired Ids using the can_set_id function.
 2.Associate each used fi lter with a mask using the can_associate_fi lter_to_mask function.
 3.Associate each used fi lter with a buffer using the can_associate_fi lter_to_buffer function.
 Click File> New> Source File> and enter fi lename EX17.C.
 Type in the following program:

 Click Compile and load into Node B.

 This is a simple transmitter program that sends out data with several IDs.

USING FILTERS (CONT.)17
 Next, copy, compile and load the following receiver program into node A.
 Click File> New> Source File> and enter fi lename EX17A.C
 Type in the following program:

 Click Compile and load into Node A.

 This program simply listens to the bus and prints out the data and the ID as they are
received. The following is sample output from this code.

 7 6 5 4 3 2 1 0
 was received with id 00000600

 7 6 5 4 3 2 1 0
 was received with id 00000700

 7 6 5 4 3 2 1 0
 was received with id 00000800

 7 6 5 4 3 2 1 0
 was received with id 00000900

Click Compile and load into Node A.

#include “CCSCANA.c”

void main ()
{
 int32 rx_id;
 int8 rx_len,i;
 struct rx_stat stat;
 int8 receive[8];

 can_init(); // always initialize the can

 while(TRUE)
 {
 if(can_kbhit()) // wait for a response
 {
 can_getd(rx_id,receive,rx_len,stat);
 for(i=0;i<8;i++)
 {
 printf(“%i “,receive[i]);
 }
 printf(“\n\rwas received with id %Lx\n\r\n\r”,rx_id);
 }
 }
}

CCS, Inc.

CAN Bus Exercise Book

N
O

T
E

S
 Try to fi lter out all of the IDs except for 0x600. To do this, add the following code right

after can_init().
 can_set_id(&C1RXM0,0xFF00,TRUE);
 can_set_id(&C1RXF0,0x600,TRUE);
 can_associate_fi lter_to_mask(F0BP,ACCEPTANCE_MASK_0);
 can_associate_fi lter_to_buffer(ATRB0,F0BP)
 The fi rst line sets up the mask ID. In this case, only bytes two and three will have the

fi lter applied to them. This works well because the only addresses that are dealt with
are 0x600, 0x700, 0x800, and 0x900. If expecting an address such as 0x5432, it would
probably be best to load the mask with the value 0xFFFF.

 The second line sets the fi lter IDs of fi lter 0 to 0x600.
 The third line associates fi lter 0 with acceptance mask 0. There are four possible masks

that can be associated with a fi lter. These are as follows.
 ACCEPTANCE_MASK_0
 ACCEPTANCE_MASK_1
 ACCEPTANCE_MASK_3
 NO_MASK
 The fourth line associates fi lter 0 with the programmable buffer 0.
 After compiling and running the code, the output should look something like this.
 7 6 5 4 3 2 1 0
 was received with ID 00000600
 7 6 5 4 3 2 1 0
 was received with ID 00000600
 7 6 5 4 3 2 1 0
 was received with ID 00000600
 As can be seen by the output, only 0x600 IDs are allowed into the receive buffers.

 The function can_init() disables all of the fi lters except fi lter 0 and
associates it with the FIFO buffer. So if another fi lter is desired to be used
instead of fi lter 0, fi lter 0 will need to be disabled with the can_disable_
fi lter() function and the other fi lter will need to be enabled with the can_
enable_fi lter() function. For example if fi lter 10 was desired with buffer 8
the code would be as follows.

 can_disable_fi lter(FLTEN0);
 can_set_id(&C1RXM0,0xFF00,TRUE);
 can_set_id(&C1RXF10,0x600,TRUE);
 can_associate_fi lter_to_mask(F10BP,ACCEPTANCE_MASK_0);
 can_associate_fi lter_to_buffer(ARB8,F10BP);
 can_enable_fi lter(FLTEN10);

CCS, Inc.

 The ECAN module provides a fi rst in fi rst out (FIFO) functional mode that allows received data to
be retrieved without having to manually look at each buffer to see if it is full. When data comes into a
register, an internal pointer available to read though one of the ECAN registers, points to the buffer
that has the data. If more data were to come in while the data was being processed, the pointer
would point to the fi rst buffer that had been fi lled. For example, if buffers zero, fi ve, four, and then
seven were fi lled in that order, the pointer would fi rst point to buffer zero. Once buffer zero had been
read, the pointer would point to buffer fi ve. Once buffer fi ve had been read the pointer would point to
four and so on until there were no full registers. All of the described functionality is taken care of in the
device drivers, however it is benefi cial to understand how the process works.

 The FIFO buffer can consist of up to 32 buffers each capable of containing 8 bytes of data. The fi rst
eight buffers can be programmed as either transmit or receive buffers. Depending on the number
of buffers being used in the ECAN module, the FIFO buffer can be anywhere between zero and
thirty two receive buffers long. The length of the FIFO buffer is determined by the number of buffers
the ECAN module is using and which of the programmable buffers is set to be a transmit buffer.
The highest programmable buffer confi gured to transmit is the cut off point for the FIFO buffer. For
example, if the highest programmable transmit buffer was TRB3 and the number of buffers being
use is thirty two, than the FIFO buffer would consist of the four programmable buffers TRB4, TRB5,
TRB6, TRB7 along with RB8-RB31, creating a 28 buffer long FIFO buffer. If TRB7 was a transmit
buffer, than the FIFO buffer would be 24 buffers long, and if all of the programmable buffers were set
to receive, then the FIFO buffer would be 32 buffers deep, the maximum size.

 Click File> New> Source File> and enter fi lename EX18.C.Click File> New> Source File> and enter fi lename EX18.C
#include <30F4012.h>
#fuses FRC,FRC_PLL16,NOWDT
#use delay(clock=117.92M)
#use rs232(baud=9600,UART1A)

#include “can-mcp2510.c”

void main()
{
 int8 data[8]={7,6,5,4,3,2,1,0};

 can_init();
 while(TRUE){
 can_putd(0x100,data,8,3,TRUE,FALSE);
 can_putd(0x200,data,8,3,TRUE,FALSE);
 can_putd(0x300,data,8,3,TRUE,FALSE);
 can_putd(0x400,data,8,3,TRUE,FALSE);
 delay_ms(3000);
 }
}

RECEIVING IN FIFO MODE
 The ECAN module provides a fi rst in fi rst out (FIFO) functional mode that allows received data to The ECAN module provides a fi rst in fi rst out (FIFO) functional mode that allows received data to The ECAN module provides a fi rst in fi rst out (FIFO) functional mode that allows received data to The ECAN module provides a fi rst in fi rst out (FIFO) functional mode that allows received data to

18

 Click Compile and load into Node B.

CAN Bus Exercise Book

 This program simply sends four consecutive data frames, and then delays three seconds
before repeating. We will use these data frames to demonstrate how the FIFO system
works and how the length of the FIFO can be changed.

 Click File> New> Source File> and enter fi lename EX18A.C.
 Type in the following program:

 Click Compile and load into Node A.

 This code uses the can_fi fo_getd function as apposed to the can_getd function. This new
function uses the pointer described above to retrieve the data from the buffer in stead of
polling each buffer to see if data has been received. This signifi cantly reduces the amount
of program memory used and cuts the amount of time that it takes to execute the function.

Click Compile and load into Node A.

#include “CCSCANA.c”

void main()
{
 int32 rx_id;
 int8 rx_len,i;
 struct rx_stat stat;
 int8 receive[8];

 can_init(); // always initialize the can

 can_set_buffer_size(8);

 while(TRUE)
 {
 if(can_kbhit()) // wait for a response
 {
 can_fi fo_getd(rx_id,receive,rx_len,stat);
 for(i=0;i<8;i++)
 {
 printf(“%i “,receive[i]);
 }
 printf(“\n\rid = %Lx\n\r”,rx_id);
 printf(“buffer = %i\n\r\n\r”,stat.buffer);
 }
 }
}

CCS, Inc.

 Below is a sample of the fi rst six seconds of output.

 7 6 5 4 3 2 1 0
 id = 00000100
 buffer = 0
 �
 7 6 5 4 3 2 1 0
 id = 00000200
 buffer = 1

 7 6 5 4 3 2 1 0
 id = 00000300
 buffer = 2
 �
 7 6 5 4 3 2 1 0
 id = 00000400
 buffer = 3
 �
 7 6 5 4 3 2 1 0
 id = 00000100
 buffer = 4
 �
 7 6 5 4 3 2 1 0
 id = 00000200
 buffer = 5
 �
 7 6 5 4 3 2 1 0
 id = 00000300
 buffer = 6
 �
 7 6 5 4 3 2 1 0
 id = 00000400
 buffer = 7

 Notice the output that eight data frames where received and that the FIFO system fi lled
the receive buffers in order from zero to seven.

 Add the following line to the program just after the can_set_buffer_size function call.
 can_enable_b_transfer(TRB3);
 This not only enables the TRB3 programmable buffer to be a transmit buffer, it also cuts

the FIFO buffer by half because now the start of the FIFO buffer is set to buffer TRB4.

18 RECEIVING IN FIFO MODE (CONT.)

CAN Bus Exercise Book

 In order to get the FIFO buffer to its maximum size, any programmable buffers that need to
be configured as transmit buffers should use the lower buffers. For example if two transmit
buffers are needed, they should be set to programmable buffers TRB0 and TRB1 because
that way TRB2 through TRB7 can be used as receive buffers for the FIFO buffer.

 Also, the previous example set the buffer size to 8 with the can_set_buffer_size function. The
FIFO buffer can also be increased in size by setting the buffer size of the ECAN module to
12, 16, 24, or 32. The method for doing this is described in section 14 of the manual.

 The output for the modified program is as follows.
 7 6 5 4 3 2 1 0
 id = 00000100
 buffer = 4
 �
 7 6 5 4 3 2 1 0
 id = 00000200
 buffer = 5
 �
 7 6 5 4 3 2 1 0
 id = 00000300
 buffer = 6

 7 6 5 4 3 2 1 0
 id = 00000400
 buffer = 7

CCS, Inc.

 Filters in FIFO mode work a little differently than fi lters not in FIFO. Previously, the
fi lters were associated with a given buffer dynamically. The buffers where thought of
as individual and therefore could be associated with individual fi lters. In FIFO mode,
however, buffers are not thought of as individual buffers, but rather as part of the entire
FIFO buffer. It would not make sense to associate a fi lter to a buffer because that buffer
may never be needed by the FIFO system. Therefore, any fi lter that is enabled, needs to
be associated with all of the buffers in the FIFO buffer. Each individual fi lter, however, can
still be dynamically associated with one of the three masks.

 The process to set up the fi lters in FIFO mode is as follows.
 1.Enable any fi lters that will be needed and disable all that will not using the can_enable_
 fi lter and can_disable_fi lter functions.
 2.Set the mask and fi lter IDs to the needed values using the can_set_id function.
 3.Associate each fi lter to the required masks using the can_associate_fi lter_to_mask function.
 4.Associate each fi lter to the FIFO buffer using the can_associate_fi lter_to_buffer function.
 Once this has been done, only IDs that match any of the fi lter values will be allowed into the

FIFO buffer.
 Add the following code to EX18 after the can_enable_b_transfer function.

 Make sure that the node B program from chapter 18 is still running on node B. Compile
and load the node A program into node A. After opening the Serial Port Monitor interface
program, the output should look like the following.

 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
 id = 00000400 id = 00000800
 buffer = 4 buffer = 5

 7 6 5 4 3 �
 id = 00000400 id = 00000800
 buffer = 6 buffer = 7

Add the following code to EX18 after the can_enable_b_transfer function.Add the following code to EX18 after the can_enable_b_transfer function.

Make sure that the node B program from chapter 18 is still running on node B. Compile Make sure that the node B program from chapter 18 is still running on node B. Compile

 can_enable_fi lter(FLTEN0);
 can_enable_fi lter(FLTEN1);

 can_set_id(&C1RXM0,0xff00,TRUE);
 can_set_id(&C1RXF0,0x400,TRUE);
 can_set_id(&C1RXF1,0x800,TRUE);

 can_associate_fi lter_to_mask(ACCEPTANCE_MASK_0,F0BP);
 can_associate_fi lter_to_mask(ACCEPTANCE_MASK_0,F1BP);

 can_associate_fi lter_to_buffer(AFIFO,F0BP); // associates fi lter 0 to FIFO buffer
 can_associate_fi lter_to_buffer(AFIFO,F1BP); // associates fi lter 1 to FIFO buffer

USING FILTERS IN FIFO MODE19

CAN Bus Exercise Book

20
 Until now, all received data needed to be read, processed, and responded to entirely

in software. An optimal situation would be if it was possible to load data into one of the
transmit buffers, give that buffer an ID, and then tell that buffer which ID to respond too
when a remote transmission was requested. Once all of these buffer parameters have
been set, the hardware would then do the work of fi ltering the ID and responding to the
received message. This is exactly what the auto-RTR functionality of the ECAN module is
for and it is available on any of the programmable buffers.

 The following is a list of steps that need to be taken to set up one of the buffers to
automatically respond to remote requests.

 1. Confi gure the desired programmable buffer to be a transmit buffer using the
 can_enable_b_transfer function.

 2. Enable any fi lters that are needed and disable any that are not using the
 can_enable_fi lter and can_disable_fi lter functions.

 3. Set the ID of the masks, the fi lters, and the transmit buffers that will be used, using the
 can_set_id and can_set_buffer_id functions.

 4. Associate the fi lter to a mask and the fi lter to the buffer using the can_associate
 fi lter_to_mask and can_associate_fi lter_to_buffer functions.

 5 Load the desired data into the desired transmit buffer using the can_load_rtr function.

 6 .Finally, enable the desired transmit buffer as an RTR buffer using the can_ enable_rtr function.

 To demonstrate the auto-RTR functionality, click File> New> Source File> and enter
fi lename EX20.C.

 Click File> New> Source File> and enter fi lename EX16A.C

 Type in the following program:

USING AUTO-RTR

#include <30F4012.h>
#fuses PR,FRC_PLL16,NOWDT
#use delay(clock=117.92M)
#use rs232(baud=9600,UART1A)

#include <can-mcp2510.c>

(continued...)

void main()
{
 int32 rx_id;
 int8 rx_len,i;
 struct rx_stat stat;
 int8 data[8]={7,6,5,4,3,2,1,0};
 int8 receive[8];
 can_init(); // always initialize the can

 while(TRUE)
 {
 can_putd(0x500,data,8,3,TRUE,TRUE);
 delay_ms(1000);
 if(can_kbhit())
 {
 can_getd(rx_id,receive,rx_len,stat);
 printf(“data received!\n\r”);
 for(i=0;i<8;i++)
 printf(“%i “,receive[i]);
 printf(“\n\r%Lx\n\r”,rx_id);
 }
 else
 {
 printf(“data not received.\n\r”);
 }

 }

}

(...continued)

 Click Compile and laod into Node B.
 This program simply puts data onto the CAN bus and then checks to see if anything was sent

back. If data was sent back, it will print the data and the ID of the sender, if not, a message
will be displayed. Notice that the last parameter of the can_putd function is now set to true.
This tells the function that the bit frame should request a remote response instead of simply
sending the data. This would be like getting a return request in an email or a letter, it simply
tells the receiver that the sender would like a response to the message.

 Next, we will write a program for node A that will respond to the RTR messages being
sent from node B.

 Click File> New> Source File> and enter fi lename EX20A.C.

CCS, Inc.

(...continued)(...continued)

20 USING AUTO-RTR (CONT.)

CAN Bus Exercise Book

#include “CCSCANA.c”

void main ()
{
 int32 rx_id;
 int8 rx_len,i;
 struct rx_stat stat;
 int8 data[8]={15,14,13,12,11,10,9,8};
 int8 receive[8];

 can_init(); // always initialize the can

 can_enable_b_transfer(TRB1);
 can_disable_fi lter(FLTEN0);
 can_enable_fi lter(FLTEN12);

 can_set_id(&C1RXM0,0xff00,TRUE);
 can_set_id(&C1RXF12,0x500,TRUE);
 can_set_buffer_id(TRB1,0x600,TRUE);

 can_associate_fi lter_to_mask(ACCEPTANCE_MASK_0,F12BP);
 can_associate_fi lter_to_buffer(ATRB1,F12BP);

 can_load_rtr(TRB1,data,8);

 can_enable_rtr(TRB1);

 while(TRUE)
 {
 }
}

 Click Compile and load into Node A.
 This program simply follows the six steps listed above and then enters an infi nite loop

which does nothing. All receive and transmit work is done completely in hardware.
 Insert the serial cable into the jack on node B and open the serial port interface. As the

program is loaded into node A, the output should look something like this:

 Type in the following program:

 data not received.
 data not received.
 data not received.
 data received!
 15 14 13 12 11 10 9 8
 00000600
 data received!
 15 14 13 12 11 10 9 8
 00000600
 data received!
 15 14 13 12 11 10 9 8
 00000600

CCS, Inc.

CHAPTER

#include <30F4012.h>
#fuses PR,FRC_PLL16,NOWDT
#use delay(clock=117.92M)
#use rs232(baud=9600,UART1A)

#include <can-mcp2510.c>

void main()
{
 int32 rx_id;
 int8 rx_len,i;
 struct rx_stat stat;
 int8 data[8]={7,6,5,4,3,2,1,0};
 int8 receive[8];

 can_init(); // always initialize the can

 while(TRUE)
 {

2021 USING ECAN INTERRUPTS

 Another useful function of the PIC24 and dsPIC33 ECAN module is the ability to interrupt
the processor because of certain ECAN events. This is useful because it allows the
processor to act on these events when they happen without the need to poll for them in
the main loop.

 The following is a list of steps that need to be taken to set up the microcontroller to
interrupt on a specifi ed ECAN event:

 1.Select the desired interrupt event with the can_enable_interrupts function. The
 available interrupt events are:
 i.Transmit Buffer Interrupt
 ii.Receive Buffer Interrupt
 iii.Receive Buffer Overfl ow Interrupt
 iv.FIFO Almost Full Interrupt
 v.Error interrupt
 vi.Wake-Up Interrupt
 vii.Invalid Message Received Interrupt
 2.Enable the microcontroller’s global interrupt with the enable_interrupts function.
 3.Enable the microcontroller’s overall CAN interrupts with the enable_interrupts function.
 To demonstrate the Interrupt functionality, click File> New> Source File> and enter

fi lename EX21.C.

 (continued...)

 Type in the following program:

CAN Bus Exercise Book

 Click Compile and load into Node B.
 This program simply puts data onto the CAN bus and then checks to see if anything was

sent back. If data was sent back, it will print the data and the ID of the sender, if not, a
message will be displayed.

 Next, is a program for node A that will use the receive buffer interrupt to receive the data,
add ten to each of the values and then send the message back with id 0x1000.

 Click File> New> Source File> and enter fi lename EX21.C.
 Type in the following program:

 can_putd(0x500,data,8,3,TRUE,FALSE);
 delay_ms(1000);
 if(can_kbhit())
 {
 can_getd(rx_id,receive,rx_len,stat);
 printf(“Data received!\n\r”);
 for(i=0;i<8;i++)
 printf(“%i “,receive[i]);
 printf(“\n\r%Lx\n\r”,rx_id);
 }
 else
 {
 printf(“No data received.\n\r”);
 }
 }
}

(...continued)

#include “CCSCANA.c”

#INT_CAN1
void can_int(void)
{
 int32 rx_id;
 int8 rx_len,i;
 struct rx_stat stat;
 int8 data[8];

 can_getd(rx_id,data,rx_len,stat);

(continued...)

 for(i=0;i<8;i++)
 data[i]+=10;

 can_putd(0x1000,data,8,3,TRUE,FALSE);
}
void main()
{
 can_init(); // always initialize the can

 can_enable_b_transfer(TRB1); // enable buffer 1 as transmit buffer

 can_enable_interrupts(RB); //selects which interrupt
event to use with the overall CAN interrupt

 enable_interrupts(INTR_GLOBAL);
 enable_interrupts(INT_CAN1); //enables the overall CAN
interrupts

 while(TRUE)
 {
 }
}

(...continued)

 Click compile and load into Node A.
 This main program simply follows the three steps listed above and then enters an infi nite loop

which does nothing. All receive and transmit work is done in the interrupt service routine.
 Insert the serial cable into the jack on node B and open the serial port interface. As the

program is loaded into node A, the output should look something like this:
 Data received!
 17 16 15 14 13 12 11 10
 00001000
 Data received!
 17 16 15 14 13 12 11 10
 00001000
 Data received!
 17 16 15 14 13 12 11 10
 00001000
 Data received!
 17 16 15 14 13 12 11 10
 00001000

USING ECAN INTERRUPTS (CONT.)21

CCS, Inc.

CAN Bus Exercise Book

 PHYSICAL
As previously noted, there is no standard physical interface. The PCA82C251 chips used
on the prototype board use a popular 2-wire CAN bus. Connections can be made directly
from the prototyping board to an external CAN bus via the 3-pin connector at the top of
the board (CANL, CANH and Ground). When using this connection over some distance,
a 120 ohm resistor should be put on both ends of the bus. This driver chip can handle up
to 110 nodes and a total bus length of 100 feet. The bus can be much longer if a slow-bit
time is used.

 An extra driver chip has been installed on the prototype board. This allows for an easy
connection to an external CAN controller that has TTL output. The three pin connection
has Transmit, Receive and Ground connections to the spare PCA82C251 chip.

Some CAN Transceivers

Philips

Maxim

TI

PCA82C251
PCA82C252
TJA1054

MAX3058
MAX3050
MAX3054

SN65LBC031
SN65HVD251
SN65HVD232

Nodes
110
 15
 32

 32
 32
 32

120
120

Speed
1 meg
125k
125k

1 meg
2 meg
250k

500k
1 meg
1 meg

Fault
Tolerant
NO
YES
YES Low EMC

NO
NO
YES

NO
NO
NO 3.3V

CONNECTING TO AN
EXTERNAL CONTROLLER22

 TIMING
All nodes on the bus must have the same target bit time. The fastest time allowed by the
PCA82C251 is 1 million bits per second.
A single-bit time is divided into four segments:
 Sync period
 Propagation period (allow for delays between nodes)
 Phase 1 period
 Phase 2 period
The data is sampled for the bit between phase 1 and phase 2.
Each of the four segment times may be programmed in terms of a base time (Time
Quanta or Tq)..
The baud rate settings are made in the .h fi les (like can-PIC24.h). The following settings
have been made:
 Sync period = 1 Tq
 Propagation period = 3 Tq
 Phase 1 period = 6 Tq
 Phase 2 period = 6 Tq
The total bit time is therfor 16 Tq.
Tq is set via the prescaller. The formula is:

 Tq = (2 x (prescaller+1))/(clock/2)
Use a clock of 20 mhz and have the prescaller set to 4. Therefore:
 Tq = (2 x (4+1))/20000000 = 0.1 us
The bit time is 16 us or 62.5K.

Sync Propagation Phase I Phase II

Sample
Point

One CAN Bit

CCS, Inc.

CONNECTING TO AN
EXTERNAL CONTROLLER (CONT.)22

This booklet is not intended to be a tutorial for the C programming language. It does attempt
to cover the basic use and operation of the development tools. There are some helpful tips
and techniques covered, however, this is far from complete instruction on C programming.
For the reader not using this as a part of a class and without prior C experience the following
references should help.

Exercise
PICmicro® MCU C: An introduction to
Programming the Microchip PIC® in

CCS by Nigel Gardner

The C Programming Language by
Brian W. Kernighan and

Dennis M. Ritchie (2nd ed.)
3 1.1 The structure of C Programs

1.2 Components of a C Program
1.3 main()
1.5 #include
1.8 constants
1.11 Macros
1.13 Hardware Compatibility
5.5 While loop
9.1 Inputs and Outputs

1.1 Getting Started
1.4 Symbolic Constants
3.1 Statements and Blockx
3.5 Loops
1.11 The C Preprocessor

4 1.7 Variables
1.10 Functions
2.1 Data Types
2.2 Variable Declaration
2.3 Variable Assignment
2.4 Enumeration
3.1 Functions
3.4 Using Function Arguments
4.2 Relational Operators
5.7 Nesting Program Control Statements
5.10 Switch Statement

1.2 Variables and Arithmetic Expr
2.1 Variable Names
2.2 Data Types and Sizes
2.3 Constants
2.4 Declarations
2.6 Relational and Logical Operators
3.4 Switch
1.7 Functions
1.8 Arguments
4.1 Basics of Functions

5 4.3 Logical Operators
4.4 Bitwise Operators
4.5 Increment and Decrement
5.1 if Statements
5.2 if-else Statements
9.3 Advanced BIT Manipulation

3.2 if-Else
2.8 Increment and Decrement Ops
2.90 Bitwise Operators

6 4.1 Arithmetic Operators 2.5 Arithmetic Operators

7 9.5 A/D Conversion 3.3 Else

References

8 5.4 For Loop
6.1 One-Dimensional Arrays

1.3 The For Statement
1.6 Arrays
2.10 Assignments Operators and Exp

10
1.6 printf Function
9.6 Data Comms/RS-232

1.5 Character Input and Output
2.6 Loops-Do-While
7.1 Standard Input and Output
7.2 Formatted Output - printf

11 6.2 Strings
6.4 Initializing Arrays
8.1 Introduction to Structures

7.9 Character Arrays
6.1 Basics of Structures
6.3 Arrays of Structures

13 9.4 Timers

14 2.6 Type Conversion
9.11 Interrupts

2.7 Type Conversions

16 9.8 SPI Communications
17 9.7 I2C Communications

18 5.2 ? Operator 2.11 Conditional Expressions
19 4.6 Precedence of Operators 2.12 Precedence and Order Eval

Comprehensive list of PIC® MCU
Development tools and information

www.mcuspace.com

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

On The Web

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small debug
program in the chip. This is a basic debug tool that takes up some of the chip’s resources (I/O
pins and memory). An emulator replaces the chip with a special connector that connects to a unit
that emulates the chip. The debugging works in a simulator manner except that the chip has all of
its normal resources, the debugger runs faster and there are more debug features. For example
an emulator typically will allow any number of breakpoints. Some of the emulators can break on
an external event like some signal on the target board changing. Some emulators can break on
an external event like some that were executed before a breakpoint was reached. Emulators cost
between $500 and $3000 depending on the chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand alone
device programmer may be used to program all the chips. These programmers will use the .HEX
file output from the compiler to do the programming. Many standard EEPROM programmers do
know how to program the Microchip parts. There are a large number of Microchip only device
programmers in the $100-$200 price range. Note that some chips can be programmed once
(OTP) and some parts need to be erased under a UV light before they can be re-programmed
(Windowed). CCS offers the Mach X which is a stand-alone programmer and can be used as an
in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources. Some
have an ICD interface and others simply have a socket for a chip that is externally programmed.
Some boards have some advanced functionality on the board to help design complex software.
For example, CCS has a Prototyping board with a full 56K modem on board and a TCP/IP stack
chip ready to run internet applications such as an e-mail sending program or a mini web server.
Another Prototyping board from CCS has a USB interface chip, making it easy to start developing
USB application programs.

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip. A
simulator offers all the normal debug capability such as single stepping and looking at variables,
however there is no interaction with real hardware. This works well if you want to test a math
function but not so good if you want to test an interface to another chip. With the availability of low
cost tools, such as the ICD in this kit, there is less interest in simulators. Microchip offers a free
simulator that can be downloaded from their web site. Some other vendors offer simulators as a
part of their development packages.

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
 · Specify operational settings at the execution level
 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface
 · Simply point, click and program
 · Additions to HEX file organization include associating comments or a graphic image
 to a file to better ensure proper file selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics
 · Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specific driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a file list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™
 · All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help file for additional assistance.

dsPIC30F4012

PIC24HJ2
56GP610

MCP25050

MCP25050

+3.3 E4 E2 G14

G13 E1 A7 D7 D5 D13 D3 D1 C13 D11+3.3 E5 E3 G15

G12 E0 A6 D6 D4 D12 D2 D0 C14 D10

D9

D8

A15

A14 G

G

LED
E1
E2
E4

LED
B1
B4
A5

LED
GP1
GP2
GP3

Pot AN5

Pot GP0

Pot AN20

Push buttons

GP5
GP4
GP6

Push button
E8

Push button
A4

Power
9V DC

ICD
Connector

ICD
Connector

RS232
F3,F2

RS232
C13,C14

7- segment LED
GP0...GP7

Connector to attach to an external CANBus network.

Connector to attach another serial device to CANBus.
Converts serial to CANBus (transeiver).

H L G Tx Rx G

H L G

Connector to attach an external CAN Bus network
to Node A’s secondary CAN Peripheral

