
Development Kit
For the PIC® MCU

Exercise Book

PIC18F8722
March 2010

PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

Copyright © 2010 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.

CCS, Inc.

Inventory
 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must

have a spare 9-Pin Serial or USB port, a CD-ROM drive and 75 MB of disk space.

 The diagram on the following page shows each component in the PIC18F8722 kit.
Ensure every item is present.

Software
 Insert the CD into the computer and wait for the installation program to start. If your computer

is not set up to auto-run CDs, then select My Computer and double-click on the CD drive.

 Click on Install and use the default settings for all subsequent prompts by clicking NEXT,
OK, CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will
have created an empty directory c:\program fi les\picc\projects that may be used for
this purpose.

 Select the compiler icon on the desktop. In the PCWH IDE, click Help>About and verify
a version number is shown for the IDE and PCH to ensure the software was installed
properly. Exit the software.

Hardware
 Connect the PC to the ICD(6) using the USB cable.(1) Connect the prototyping board (10) to

the ICD using the modular cable. Plug in the DC adaptor (9) to the power socket and plug
it into the prototyping board (10). The fi rst time the ICD-U is connected to the PC, Windows
will detect new hardware. Install the USB driver from the CD or website using the new
hardware wizard. The driver needs to be installed properly before the device can be used.

 The LED should be red(2) on the ICD-U to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the desktop.
Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LED should be
illuminated green. If any errors are detected, go to Diagnostic tab. If all tests pass, the hardware
is installed properly.

 Disconnect the hardware until you are ready for Chapter 3. Always disconnect the power
to the Prototyping board before connecting/disconnecting the ICD or changing the
jumper wires to the Prototyping board.

(1) ICS-S40 can also be used in place of ICD-U. Connect it to an available serial port on the PC using the
9 pin serial cable. There is no driver required for S40.

1 UNPACKING AND INSTALLATION

(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

18F8722 Exercise Book

PIC
18
F8
72
2

1 Storage box
2 Exercise booklet
3 CD-ROM of C compiler (optional)
4 Serial PC to Prototyping board cable
5 Modular ICD to Prototyping board cable
6 ICD unit for programming and debugging
7 Parts box includes:

  93LC56 serial EEPROM chip
  DS1631 digital thermometer chip
  NJU6355 real-time clock chip with attached 32kHz crystal
  Two digit 7 segment LED module
  Two 1K resistors
  Jumpers to connect the Prototyping board to the breadboard
 8 USB (or Serial) PC to ICD cable
 9 AC Adaptor (9VDC)
10 Prototyping board with a PIC18F8722 processor chip

 (See inside front and back cover for details on the board layout and schematic)
11 Breadboard for prototyping circuits

ICD-U64

PIC
18
F6
72
2

PIC
18
F8
72
2

CCS, Inc.

USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)2

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: c:\program fi les\picc\examples\ex_stwt.c

 Scroll down to the bottom of this fi le. Notice the editor shows comments, preprocessor
directives and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a Help fi le
description for set_timer0 appears. The cursor may be placed on any keyword or built-in
function and F1 will fi nd help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various standard
cut, paste and copy functions.

 Review the editor option settings by clicking on Options>Editor Properties. The
IDE allows selection of the tab size, editor colors, fonts, and many more. Click on
Options>Toolbar to select which icons appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different

compilers for each family of Microchip parts. All the exercises in this booklet are for the
PIC18F8722 chip, a 16-bit opcode part. Make sure PCH 16 bit is selected in the white
box under the Compiler tab.

 The main program compiled is always shown in the bottom of the IDE. If this is not the
fi le you want to compile, then click on the tab of the fi le you want to compile. Right click
into editor and select Make fi le project.

 Click Options>Project Options>Include Files… and review the list of directories
the compiler uses to search for included fi les. The install program should have put two
directories in this list: devices and drivers.

 Normally the fi le formats need not be changed and global defi nes are not used in these
exercises. To review these settings, click Options>Project Options>Output Files and
Options>Project Options>Global Defi nes.

 Click the compile icon to compile. Notice the compilation box shows the fi les created
and the amount of ROM and RAM used by this program. Press any key to remove the
compilation box.

18F8722 Exercise Book

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the microcontroller

is used. Identifiers that start with @ are compiler generated variables. Notice some
locations are used by more than one item. This is because those variables are not active
at the same time.

 Click Compile>C/ASM List. This file shows the original C code and the assembly code
generated for the C. Scroll down to the line:
 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal. The
second instruction moves W into memory. Switch to the Symbol Map to find the memory
location where int_count is located.

 Click View>Data Sheet, then View. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files and Projects are created,
opened, or closed using this menu.

Place cursor here for slide out boxes.
All of the current project’s source and
output files can be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using
this menu.

Compiles current selected unit, does NOT link/build
into a HEX file.

Quick view of supported devices.

Compiles all units that have changed since last build,
links/builds into a HEX file.

Compiles all units regardless if they have changed since
last build, links/builds into a HEX file.

CCS, Inc.

 Open the compiler IDE. If any fi les are open, click File>Close All

 Click File>New>Source File and enter the fi lename EX3.C

 Type in the following program and Compile.

COMPILING AND
RUNNING A PROGRAM3

#include <18f8722.h>
#device ICD=TRUE
#fuses HS,NOLVP,NOWDT
#use delay (clock=20000000)

#defi ne GREEN_LED PIN_A5

void main () {
 while (TRUE) {
 output_low (GREEN_LED);
 delay_ms (1000);
 output_high (GREEN_LED);
 delay_ms (1000);
 }
}

N
O

T
E

S

 The fi rst four lines of this program defi ne the basic hardware
environment. The chip being used is the PIC18F8722, running at
20MHz with the ICD debugger.

 The #defi ne is used to enhance readability by referring to
GREEN_LED in the program instead of PIN_A5.

 The “while (TRUE)” is a simple way to create a loop that never stops.

 Note that the “output_low” turns the LED on because the other end of
the LED is +5V. This is done because the chip can tolerate more
current when a pin is low than when it is high.

 The “delay_ms(1000)” is a one second delay (1000 milliseconds).

18F8722 Exercise Book

 Modify the program to light the green LED for 5 seconds, then the yellow for
1 second and the red for 5 seconds.

 Add to the program a #define macro called “delay_seconds” so the
delay_ms(1000) can be replaced with : delay_seconds(1); and
delay_ms(5000) can be: delay_seconds(5);.
Note: Name these new programs EX3A.c and EX3B.c and follow the same
 naming convention throughout this booklet.

A

B

FURTHER STUDY

 Connect the ICD to the Prototyping board using the modular cable, and connect the ICD to
the PC. Power up the Prototyping board.

 Click Debug>Enable Debugger and wait for the program to load.

 If you are using the ICD-U40 and the debugger cannot communicate to the ICD unit go to
the debug configure tab and make sure ICD-USB from the list box is selected.

 Click the green go icon:

 Expect the debugger window status block to turn yellow indicating the program is running.

 The green LED on the Prototyping board should be flashing. One second on and one
second off.

 The program can be stopped by clicking on the stop icon:

ICD-U64

CCS, Inc.

 Type in the following program, named EX4.C, Compile and Run:

 As can be seen from the program, the green LED should come on. Press the button and
the yellow LED should light and then the red LED when pressed again.

 Add the following new type below the // lines:
typedef enum {GREEN,YELLOW,RED} colors;

4 HANDLING INPUT

#include <18f8722.h>
#device ICD=TRUE
#fuses HS,NOLVP,NOWDT
#use delay(clock=20000000)

#defi ne GREEN_LED PIN_A5
#defi ne YELLOW_LED PIN_B4
#defi ne RED_LED PIN_B5
#defi ne PUSH_BUTTON PIN_A4
//
void light_one_led(int led) {
 output_high(GREEN_LED);
 output_high(YELLOW_LED);
 output_high(RED_LED);
 switch(led) {
 case 0 : output_low(GREEN_LED); break;
 case 1 : output_low(YELLOW_LED); break;
 case 2 : output_low(RED_LED); break;
 }
}

void wait_for_one_press() {
 while(input(PUSH_BUTTON)) ;
 while(!input(PUSH_BUTTON)) ;
}

void main() {
 while(TRUE) {
 light_one_led(0);
 wait_for_one_press();
 light_one_led(1);
 wait_for_one_press();
 light_one_led(2);
 wait_for_one_press();
 }
}

18F8722 Exercise Book

N
O

T
E

S

 The Prototyping board has one momentary pushbutton that may be
used as an input to the program. The input pin is connected to a 10K
pull-up resistor to +5V. The button, when pressed, shorts the input pin
to ground. The pin is normally high while in this confi guration, but it is
low while the button is pressed.

 This program shows how to use simple C functions. The function
wait_for_one_press() will fi rst get stuck in a loop while the input pin
is high (not pressed). It then waits in another loop while the pin is low.
The function returns as soon as the pin goes high again. Note that
the loops, since they do not do anything while waiting, do not look like
much—they are a simple do nothing.

 When the button is pressed once, it is common for several very quick
connect disconnect cycles to occur. This can cause the LEDs to
advance more than once for each press. A simple debounce algorithm
can fi x the problem. Add the following line between the two while
loops: delay_ms(100); The following scope picture of a button press
depicts the problem:

 Modify the program so that while the button is held down the LEDs alternate
as fast as possible. When the button is not pressed the LED state freezes.
This creates a random color program.

A

FURTHER STUDY

 Change the parameter to light_one_led to colors instead of int.

 Change the 0, 1, 2 in the call to GREEN, YELLOW, RED.

CCS, Inc.

 It is good practice to put all the hardware defi nitions for a given design into a common
fi le that can be reused by all programs for that board. Open EX4.C and drag the cursor
over (highlight) the fi rst 9 lines of the fi le. Click Edit>Paste to fi le and give it the name
prototype.h.

 It is also helpful to collect a library of utility functions to use as needed for future
programs. Note that just because a function is part of a program does not mean it
takes up memory. The compiler deletes functions that are not used. Highlight the
wait_for_one_press() function, light_one_led function and the typedef line (if added from
Chapter 4 Notes section) and save as a new fi le named utility.c. Open utility.c and add
the following new function to the fi le:

 Close all fi les and start a new fi le named EX5.C as follows:

PROGRAM STRUCTURE5

void show_binary_on_leds(int n) {
 output_high(GREEN_LED);
 output_high(YELLOW_LED);
 output_high(RED_LED);
 if(bit_test(n,0))
 output_low(GREEN_LED);
 if(bit_test(n,1))
 output_low(YELLOW_LED);
 if(bit_test(n,2))
 output_low(RED_LED);
}

#include <prototype.h>
#include <utility.c>

void main() {
 int count = 0;

 while(TRUE) {
 show_binary_on_leds(count);
 wait_for_one_press();
 count++;
 }
}

18F8722 Exercise Book

 Compile and Run the program. Check
that with each button press, the LEDs
increment in a binary number 0-7 as
shown in the diagram to the right.

Where it is defi ned Can be accessed Life of the variable
Inside a function Only in that function While function is alive
Inside a function with
STATIC Only in that function During the entire run of the

program

Outside all functions In any function defi ned
afterwards in the fi le

During the entire run of the
program

After “{“ inside a function Only between the “{“
and corresponding “}”

Only up to the corresponding
“}”

N
O

T
E

S

 In C, a function must either appear in the input stream before it is used
OR it must have a prototype. A prototype is the part of the function
defi nition before the “{“. In a program where main calls function A and
function A calls function B, the order in the fi le must be B, A, MAIN.
As an alternative, have Ap, Bp, MAIN, A, B where Ap and Bp are
prototypes. Frequently, prototypes are put into a header fi le with a .h
extension.

 The scope, initialization, and life of C variables depend on where and
how they are declared. The following is a non-inclusive summary
of the common variable scopes. Note that if a variable has an
initialization (like int a=1;) the assignment happens each time the
variable comes to life.

0 0 0 0
0 0 1 1
0 1 0 2
0 1 1 3
1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

 Modify the program to increment the binary number 1 every second (the
button is not used).

 Instead of the built-in function BIT_TEST use the standard C operators (such
as & and ==) to test the bits.

A

B

FURTHER STUDY

CCS, Inc.

 Open EX5.C and start the debugger Debug>Enable Debugger.
 Click the reset icon to ensure the target is ready.
 Click the step-over icon twice. This is the step over command. Each click causes a

line of C code to be executed. The highlighted line has not been executed, but the line
about to be executed.

 Step over the show _ binary _ on _ leds(count); line and notice that one click
executed the entire function. This is the way step over works. Click step over on
wait _ for _ one _ press();. Press the prototype button and notice the debugger
now stops since the function terminates.

 Click the Watch tab, then the add icon to add a watch. Enter count or choose
count the variables from list, then click Add Watch. Notice the value shown. Continue
to step over through the loop a few more times (press the button as required) and notice
the count watch increments.

 Step over until the call to show _ binary _ on _ leds(count); is highlighted. This
time, instead of step over, use the standard step icon several times and notice the
debugger is now stepping into the function.

 Click the GO icon to allow the program to run. Press the prototype button a couple
of times to verify that the program is running normally. Click the stop icon to halt
execution. Notice the C source line that the program stopped on. This is the line were the
program is waiting for a button press.

 In the editor, click on show _ binary _ on _ leds(count); to move the editor cursor
to that line. Then click the Breaks tab and click the add icon to set a breakpoint. The
debugger will now stop every time that line is reached in the code. Click the GO icon
and then press the prototype button. The debugger should now stop on the breakpoint.
Repeat this a couple of times to see how the breakpoint works. Note that the ICD with
PIC16 chips only allow one breakpoint at a time.

 Click Compile>C/ASM list. Scroll down to the highlighted line. Notice that one assembly
instruction was already executed for the next line. This is another side effect of the ICD-S
debugger. Sometimes breakpoints slip by one ASM instruction.

 Click the step over icon a few times and note that when the list fi le is the selected
window, the debugger has executed one assembly instruction per click instead of one
entire C line.

 Close all fi les and start a new fi le EX6.C as follows:

DEBUGGING6

18F8722 Exercise Book

 Compile the program and step-over until the c=a+b is executed. Add a watch for c and
the expected value is 16.

 Step-over the subtraction and notice the value of c. The int data type by default is
not signed, so c cannot be the expected –6. The modular arithmetic works like a car
odometer when the car is in reverse only in binary. For example, 00000001 minus 1 is
00000000, subtract another 1 and you get 11111111.

 Reset and again step up to the c=a+b. Click the Eval tab. This pane allows a one time
expression evaluation. Type in a+b and click Eval to see the debugger and calculate the
result. The complete expression may also be put in the watch pane as well. Now enter
b=10 and click Eval. This expression will actually change the value of B if the “keep side
effects” check box of the evaluation tab is checked. Check it and click Eval again. Step
over the addition line and click the Watch tab to observe the c value was calculated with
the new value of b.

#include <prototype.h>
#include <utility.c>

void main() {
 int a,b,c;

 a=11;
 b=5;
 c=a+b;
 c=b-a;
 while(TRUE);
}

 Modify the program to include the following C operators to see how they work:
* / % & ^
Then, with b=2 try these operators: >> <<
Finally, try the unary complement operator with: c=~a;

 Design a program to test the results of the relational operators:
< > = = !=
by exercising them with b as 10, 11, and 12.
Then, try the logical operators || and && with the four combinations of a=0,1
and b=0,1.
Finally, try the unary not operator with: c=!a; when a is 0 and 1.

A

B

FURTHER STUDY

CCS, Inc.

 The PIC18F8722 chip has 16 pins that may be used to read an analog voltage. These
16 pins can be confi gured to certain combinations of analog input and digital pins, but
not all combinations are possible. The following is a simple program (EX7.c) to read one
analog pin.

 Compile and Run the program. Verify that the Prototyping board knob (A1) is turned so
the green LED is on when it is low, the red LED when high and the yellow LED for a small
region in the center.

7 ANALOG TO DIGITAL
CONVERSION

#include <prototype.h>
#include <utility.c>

#defi ne cutoff 128 // 2.5 Volts
#defi ne neutral_zone 25 // 0.5 Volts

void main() {
 int reading;

 setup_adc_ports(AN0_TO_AN1);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(1);

 while(TRUE) {
 reading = read_adc();
 if(reading<(cutoff-neutral_zone/2))
 light_one_led(GREEN);
 else if (reading>(cutoff+neutral_zone/2))
 light_one_led(RED);
 else
 light_one_led(YELLOW);
 }
}

2.5V

0V 5V

18F8722 Exercise Book

 Modify the program to use a long variable for reading. Open prototype.h and after:
 #device ICD=TRUE
add the following:
 ADC=10
This will change the range to 0-1023. Change the constant in the program to
refl ect the new range.
When the above example is complete, remove the ADC=10 so it will default to
 ADC=8

 Write a timer program that will light the green LED for x seconds when pressing the
button. x should be 0-25, depending on the setting of the analog knob.

A

B

FURTHER STUDY

N
O

T
E

S
 By default, the analog to digital converter is 8 bits. Thus, a range of

0 to 5 volts analog is represented by the numbers 0-255. The A/D
reading can be converted to volts by the formula:
 Volts = reading*(5.0/255)

 The setup_adc_ports function call determines what pins are set to
be analog inputs. The setup_adc function call determines how fast
the conversion is done. The internal clock option uses an internal
RC clock. Although the timing is not exact, it is long enough for an
accurate conversion. The time can be based off the instruction clock
for more precise timing.

 The set_adc_channel function sets the A/D converter to channel 1
(AN1 or A1). This switches an internal mux in the part, but does not
start an A/D conversion. Even though a conversion has not started,
there is a small capacitor in the chip that must charge up after the
port switch and before the voltage is read. This is fast with a low
impedance input, but for a higher impedance input, a small delay
should be put in after the channel is changed.

 The call to read_adc starts a conversion, waits for it to complete and
returns the result. The conversion time is around 20µs.

CCS, Inc.

 The following EX8.c program illustrates how to change the EX7.c program such that
the value used to light the LED is the average voltage over the previous 10 seconds.

8 ARRAYS AND ANALOG
FILTERING

#include <prototype.h>
#include <utility.c>

#defi ne cutoff 128 // 2.5 volts
#defi ne neutral_zone 25 // 0.5 Volts

void main() {
 int history[10],i;
 int history_ptr = 0;
 long reading;
 int count=0;

 setup_adc_ports(AN0_TO_AN1);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel (1);

 while (TRUE) {
 reading=0;
 delay_ms(1000);
 history[history_ptr++] = read_adc();
 if (history_ptr==10) {
 history_ptr=0;
 count = 10;
 } else
 if (count<10)
 count=history_ptr;
 for (i=0; i<count;i++)
 reading += history[i];
 reading /= count;
 if (reading<(cutoff-neutral_zone/2))
 light_one_led(GREEN);
 else if (reading>(cutoff+neutral_zone/2))
 light_one_led(RED);
 else
 light_one_led(YELLOW);
 }
}

18F8722 Exercise Book

 Run the new program and confi rm that the movement of the knob takes 10 seconds
to appear on the LEDs. Furthermore, confi rm that a quick movement of the knob from
high to low makes no difference in the LEDs.

 Modify the program to keep all LEDs off until 10 samples are obtained.
 Modify the program to handle the LEDs differently on even and odd

cycles as follows:
 Even: Show the actual last reading on the LED (not fi ltered).
 Odd: If the last reading is the same as the fi ltered reading, show
 this on the LEDs. Otherwise, turn off all LEDs.
The LED fl ashes after a change, and when the reading is stable, the LED will
be solid.

A
B

FURTHER STUDY

N
O

T
E

S

 This program uses several of the C shortcut operators. For example, the
reading += history[i] is the same as
reading = reading + history[i]
and history[history _ ptr++] = read _ adc(); is the same as
history[history _ ptr] = read _ adc();
history _ ptr = history _ ptr+1;

A C array declared history[10] means the valid subscripts are history[0]
through history[9].
The reading variable needs to be a long (16 bits) because the largest value
255*10 is larger than 8 bit int.
The history variable can be placed in the watch list and then when the
program is halted, the debugger will show all the points in history being used
to make up the fi ltered reading.







CCS, Inc.

 Execution of the EX5.c program always begins counting at 0. This can be modifi ed by
creating EX9.c that continues counting where it left off when restarted. This is done by
saving the count value in the PIC18F8722 internal data EEPROM. This memory retains
the data even when the power is removed.

 Create the EX9.c as follows:

 Compile and Run the program. Verify when the program is halted, reset, and restarted
that the count continues where left off.

9 STAND-ALONE PROGRAMS
AND EEPROM

#include <prototype.h>
#include <utility.c>

void main() {
 int count;

 count = read_eeprom(0);
 while(TRUE) {
 show_binary_on_leds(count);
 wait_for_one_press();
 count++;
 write_eeprom(0,count);
 }
}

N
O

T
E

S

 The fi rst argument to read/write_eeprom is the address in the
EEPROM to write the byte to. The PIC18F8722 part ranges from
0 to 1023, allowing 1024 bytes to be saved. The second argument in
write_eeprom is the value to write.
A given location in the data EEPROM can be written to a maximum
of 1,000,000 times. For this reason, a program should be designed
not to write any more often than is necessary. For example, if the
volume setting for a TV is being saved, one might wait until there are
no changes for 5 seconds before saving a new value to EEPROM.
Some system designs can give early warning on power down and the
program can only save to EEPROM at power down.



18F8722 Exercise Book

 Close the debug window.
 Copy the prototype.h file to a new file protoalone.h. Remove from this file the line:

 #device ICD=TRUE

 This makes a program that uses the new include file a stand alone program which does
not need the ICD to run.

 Modify EX9.c to use protoalone.h. Compile the program, then click Tools>ICD to
load the program onto the Prototyping board.

 Disconnect the power from the Prototyping board, then disconnect the ICD from the
Prototyping board.

 Power up only the Prototyping board and verify the program runs correctly.
 Press the reset button on the Prototyping board and release. The LEDs should go off

while in reset, then the program will restart.

 Modify EX7.c so that the cut-off point is a variable and that variable is kept
in EEPROM location 100. Establish a new cut-off point whenever the
pushbutton is pressed to wherever the knob is set. Be careful to only write
the EEPROM once per press.

 Modify the EX9.c program so that 10 EEPROM locations are used and each
time the button is pressed only one of the 10 locations is written to and the
location changes with each press. This will extend the life of this unit by 10
times, if it were a real product.
Hint: The count value could be the sum of all 10 locations %8.

A

B

FURTHER STUDY

CCS, Inc.

 RS-232 is a popular serial communications standard used on most PCs and many
embedded systems. Two wires are used (in addition to ground), one for outgoing data
and one for incoming data. The PIC18F8722 chip has built-in hardware to buffer the
serial data if pins C6 and C7 or G1 and G2 are used. The compiler will allow any pins to
be used and will take advantage of the built-in hardware if you pick those pins. Add the
following line to the end of the protoalone.h fi le

#use rs232 (baud=9600, xmit=PIN _ C6, rcv=PIN _ C7)

 Create the EX10.c as follows:

10 USING A RS-232 PORT

#include <protoalone.h>
#include <utility.c>
#include <stdlib.h>
#include <input.c>

void main() {
 long a,b,result;
 char opr;

 setup_timer_0(RTCC_INTERNAL);
 while(TRUE) {
 printf(“\r\nEnter the fi rst number: “);
 a=get_long();

 do {
 printf(“\r\nEnter the operator (+-*/): “);
 opr=getc();
 } while(!isamong(opr,”+-*/”));

 printf(“\r\nEnter the second number: “);
 b=get_long();

 switch(opr) {
 case ‘+’ : result= a+b; break;
 case ‘-’ : result= a-b; break;
 case ‘*’ : result= a*b; break;
 case ‘/’ : result= a/b; break;
 }

 printf(“\r\nThe result is %lu “,result);
 }
}

18F8722 Exercise Book

 Compile and load the program into the Prototyping board.
 Connect the Prototyping board to the PC as shown below.

 At the PC, close the debugger window and start the program Tools>Serial Port
Monitor. Set the correct COMM port if necessary.

 Power up the Prototyping board and a prompt at the PC should appear. Enter a number
followed by the enter key, an operator (like +) and another number followed by enter.
Verify the result is shown correctly.

 Modify to add the operators: % | & ^
 Modify to use fl oat instead of long. You will need to do get_fl oat() instead

of get_long() and use the format specifi cier %9.4f to get four digits after the
decimal place.

A
B

FURTHER STUDY

N
O

T
E

S

 The basic functions for RS-232 are putc() and getc(). printf calls
putc() multiple times to output a whole string and format numbers if
requested. get_long() is a function in input.c to read a long number
by calling getc() many times. See input.c for other functions such as
get_int() and get_string().

 The % in the printf indicates another parameter is included in the printf
call and it should be formatted as requested. %lu indicates to format
as an unsigned long.

 getc() will cause the program to stop and wait for a character to come
in before it returns.

CCS, Inc.

 Create the EX11.c as follows:

 Compile and load the program into the
Prototyping board.

 Power up the board and use the serial port
monitor to test.

11 TWO RS-232 PORTS

#include <protoalone.h>

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, stream=PORT1)
#use rs232(baud=9600, xmit=PIN_G1, rcv=PIN_G2, stream=PORT2)

void main() {
 char c;

 fprintf(PORT1, “\r\n PORT ONE \r\n”);
 fprintf(PORT2, “\r\n PORT TWO \r\n”);

 while(TRUE) {
 if(kbhit(PORT1)) {
 c=fgetc(PORT1);
 fputc(c+1,PORT2);
 }
 if(kbhit(PORT2)) {
 c=fgetc(PORT2);
 fputc(c-1,PORT1);
 }
 }

}

18F8722 Exercise Book

N
O

T
E

S
 At a hardware level, RS-232 sends a series of bits. The baud=option

specifi es how many bits are sent per second. The bit stream, as
specifi ed above, is a start bit (always 0), 8 data bits (lsb fi rst) and a
stop bit (always 1). The line then remains at the 1 level. The number
of bits may be changed with a bits= option and a parity bit can be
added before the stop bit with a parity= option. A 0 is represented as
a positive voltage (+3 to +12V) and a 1 is represented as a negative
voltage (-3 to –12V). Since the PIC18F8722 outputs only 0V and 5V
a level converter is required to interface to standard RS-232 devices
such as a PC. A popular chip that does this is the MAX232. See the
schematic in the back cover for details. The following diagram shows
a single character A (01000001) as sent at 9600 baud. The top is from
the PIC18F8722, the bottom is from the MAX232, the 8 data bits are
between the dotted lines. Each bit is 104µs.

CCS, Inc.

 RS-232 printf statements can be a good tool to help debug a program. It does, however,
require an extra hardware setup to use. If the ICD is being used as a debug tool, the
compiler can direct putc() and getc() through the debugger interface to the debugger
screen. Add the following line to the end of the prototype.h fi le:

 #use rs232 (DEBUGGER)

 Modify EX10.c to create EX12.c by changing protoalone.h to prototype.h.
 Compile and load the program into the Prototyping board.
 Click , then click the Monitor tab.
 A prompt should appear. Enter some data to confi rm that the program is working.
 Click and reset the program.
 In PCW click Project>Open all fi les as an easy way to get all the project fi les open in

IDE.
 Click the stdlib.h tab, and set a breakpoint in the atol() function on the line:
 result = 10*result + (c - ‘0’);

 This function is called from get_long() to convert a string to a number. This line is
executed for each character in the string.

 Click the debugger Break Log tab, check the LOG box, set the breakpoint as 1 and
expression as result. Result is the value of the number being converted.

 Click , then click the Monitor tab and enter 1234 enter.
 Click the Log tab and notice that each time the breakpoint was hit the value of the result

variable was logged. In this case the breakpoint did not cause a full stop of the program,
it just logged the value of the requested expression and kept on going.

 Stop the program.
 Delete the breakpoint by selecting the breakpoint and click on the icon.
 Uncheck the LOG box under the log tab.
 Set a breakpoint on the last printf() in the program.
 Enter watches for a, b and result.
 Click and enter two numbers and +.
 When the break is reached click on the snapshot icon:
 Check Time and Watches, uncheck everything else.
 If a printer is connected to the PC select Printer, otherwise select Unique fi le.
 Click on the Now button.
 Notice the requested data (time and watches) are either printed or written to a fi le as

requested.

12 ADVANCED DEBUGGING

18F8722 Exercise Book

 Click on the snapshot icon again and this time select Append to file, put in a filename
of EX12.TXT and check After each single step.

 Check Last C line executed in addition to the Time and Watch selected already and
close the snapshot window.

 Reset and then Step Over until the final printf() is executed. Enter the data when
requested.

 Use File>Open>Any File to find the file EX12.TXT (by default in the Debugger Profiles
directory) after setting the file type to all files.

 Notice the log of what happened with each step over command.
 Uncheck the After each single step in the snapshot window.
 Clear the breakpoints and set a breakpoint on the switch.
 Click Reset then Go and enter the requested data using the + operator.
 When the break is reached click on the Peripherals tab and select Timer0.
 Shown will be the registers associated with timer0. Although this program does not use

timer0 the timer is always running so there is a value in the TMR0 register. Write this
value down.

 Clear the breakpoints and set a breakpoint on the final printf().
 Click GO.
 Check the TMR0 register again. If the new value is higher than the previous value then

subtract the previous value from the current value. Otherwise, add 256 to the current
value and then subtract the previous value (because the timer flipped over).

 The number we now have is the number of clock ticks it took to execute the switch and
addition. A clock tick by default is 0.2µs. Multiply your number of ticks by 0.2 to find the
time in µs. Note that the timers (and all peripherals) are frozen as soon as the program
stops running.

 The debugger Eval tab can be used to evaluate a C expression. This
includes assignments. Set a break before the switch statement and use the
Eval window to change the operator being used. For example, type a + but
change it to a - before the switch.

 Set a break on the switch statement and when reached, change to the
C/ASM view and single step through the switch statement. Look up the
instructions executed in the PIC18F8722 data sheet to see how the switch
statement is implemented. This implementation is dependent on the case
items being close to each other. Change * to ~ and then see how the
implementation changes.

A

B

FURTHER STUDY

CCS, Inc.

 The PIC18F8722 has fi ve built-in timers. Each timer has a different set of features. The
following example will use Timer #1 to measure the time it takes to execute some C code.

 Create the fi le EX13.c as follows:

 Compile and Run the program. Check the monitor tab to see the result.
 This number is the number of timer ticks that it took to set and read the timer. The

T1_INTERNAL indicates the instruction clock is the source for the timer. The instruction
clock is the oscillator divided by 4, or in our case, 0.2µs. This time represents the
overhead of our timer code and may now be used in a more useful example.

 Modify the program as follows and replace the ??? with the number of ticks determined
in the above program.

13 TIMERS

#include <prototype.h>

void main() {
 long time;

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_1);
 set_timer1(0);

 time = get_timer1();
 printf(“Time in ticks is %lu\r\n”,time);
}

#include <prototype.h>

void main() {
 long time;
 long a,b,c;

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_1);
 set_timer1(0);
 a=b*c;
 time = get_timer1();
 time -= ???; // subtract overhead
 printf (“Time is %lu microseconds.\r\n”,
 (time+2)/5);
}

18F8722 Exercise Book

N
O

T
E

S
 Since “time” represents the number of 0.2 microsecond ticks that it takes

to do “a=b*c”, then time/5 is the number of microseconds it takes to do that
one line of C code. Use (time + 2)/5 to round instead of truncating.

 All the timers on the PIC18F8722 count up and when the maximum value
is reached, the timer restarts at 0. The set_ timer1(0) resets the timer to 0.
Timer1 is 16 bits and the range is 0 to 65535. This means it will overfl ow
every 13107.2µs. This is the largest time the program will be able to measure.

 If using T1_EXTERNAL instead of INTERNAL, then the timer would
increment every time pin C0 cycled. This makes it more of a counter.

 If using T1_DIV_BY_2 instead of BY_1, then the timer would increment
once for every 2 instruction clocks. This makes the timer tick 0.4µs and the
range of the timer is now 26214.4µs.

 The following is a summary of the timers on the PIC18F8722 chip:

#0

Input is Instruction Clock or external pin
Range is 0-255 or 0-65535
Input can be divided by 1,2,4,8,16,32,64,128,256
Can generate interrupt on each overfl ow

#1

Input is Instruction Clock or external pin
Range is 0-65535
Input can be divided by 1,2,4,8
Can generate interrupt on each overfl ow

#2

Input is Instruction Clock only
Range can be programmed from 0-1 to 0-255
Input can be divided by 1,4,16
Can generate interrupt on 1-16 overfl ows

#3

Input is Instruction Clock or external pin
Range is 0-65535
Input can be divided by 1,2,4,8
Can generate interrupt on each overfl ow

#4

Input is Instruction Clock only
Range can be programmed by 0-1 to 0-255
Input can be divided by 1,4,16
Can generate input on 1-16 overfl ows

 Time the actual time for a delay_us(200) to see how accurate the compiler is.
 Make a program to time the addition operator for 8 bit, 16 bit, 32 bit and fl oating

point. Instead of int, the compiler allows the use of int8, int16 and int32 to
specify the number of bits in an integer variable.

A
B

FURTHER STUDY

CCS, Inc.

 An interrupt is a specifi c event that causes the normal program execution to be
suspended wherever it is and an interrupt function is executed. Normal program
execution continues when the interrupt function returns. The PIC18F8722 has a number
of interrupt sources such as a timer overfl ow, an incoming RS-232 character or a change
on a pin.

 In this exercise, the timer1 overfl ow interrupt will be used to extend the timer1 timer from
16 bits to 32 bits by counting the number of times the timer overfl ows. Create the fi le
EX14.c as follows:

 Compile and Run the program. Press the button, release, and note the time it was held
down is shown to six decimal places in the Monitor pane.

14 INTERRUPTS

#include <prototype.h>

int16 overfl ow_count;

#int_timer1
void timer1_isr() {
 overfl ow_count++;
}

void main() {
 int32 time;

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_1);
 enable_interrupts(int_timer1);
 while(TRUE) {
 enable_interrupts(global);

 while(input(PUSH_BUTTON));// Wait for press
 set_timer1(0);
 overfl ow_count=0;

 while(!input(PUSH_BUTTON));//Wait for release
 disable_interrupts(global);
 time = get_timer1();
 time = time + ((int32)overfl ow_count<<16);
 time -= 15; // subtract overhead
 printf(“Time is %lu.%06lu seconds.\r\n”,
 time/5000000, (time/5)%1000000);
 }
}

18F8722 Exercise Book

 Make a version of this program that prints in the format
 MM:SS.FFFFFF
Where MM is minutes, SS is seconds and FFFFFF is fractions of a second

 Add a second interrupt using timer 0 to interrupt every 13.1ms. In the interrupt
routine, count interrupts and when 76 interrupts have happened, do a putc(‘.’);.
This should display a period every second while interrupts are enabled.

A

B

FURTHER STUDY

N
O

T
E

S
 The interrupt function is designated by preceding it with #INT_TIMER1.

A number of interrupt functions can be specifi ed by preceding each
with the proper directive like #INT_EXT for the external interrupt pin
(B0) or #INT_RDA for an incoming RS-232 character.

 An interrupt must be specifi cally enabled (via enable interrupts
(specifi c interrupt)) and interrupts must be globally enabled (via
enable_interrupts(GLOBAL)). The GLOBAL enable/disable controls
whether any interrupts are serviced.

 Notice interrupts are disabled before the timer is read and combined
with the overfl ow count. This is done to prevent the following situation:
 The timer value is read and it is 65535
 The overfl ow interrupt happens and the counter is incremented to 1
 The program continues and reads the counter as 1
 The time is assumed to be 65536+65535 when in fact the correct
 time is 65535

 If interrupts are disabled and an interrupt event happens, then the
interrupt function will be called when interrupts are enabled. If multiple
interrupt events of the same type happen while interrupts are disabled,
then the interrupt function is called only once when interrupts are
enabled.

 The %06lu format specifi er is the same as %6lu except leading zeros
are printed.

CCS, Inc.

 The breadboard may be used to prototype
circuits with components not on the
Prototyping board. The black terminal
block is used to connect jumpers from the
Prototyping board to the breadboard. The
breadboard has two columns on either
side where all the holes in the column
are connected. These are usually used
for +5V and Ground. The inside of the
breadboard is split down the center and
the holes on either side are connected
within the row. The gray shading on the
right diagram shows how the holes are
electrically connected.

 This exercise will use an external serial EEPROM chip. Create the fi le EX15.c, a variation
of EX9.C as follows:

15 USING THE BREADBOARD

#include <protoalone.h>
#include <utility.c>
#include <9356.c>

void main() {
 int count;

 init_ext_eeprom();
 count = read_ext_eeprom(0);
 while(TRUE) {
 show_binary_on_leds(count);
 wait_for_one_press();
 count++;
 write_ext_eeprom(0,count);
 }
}

18F8722 Exercise Book

 Wire up the circuit as shown in the following diagram. The diagram on the left shows
how to route the wires. The schematic view below is how the remaining exercises in
this booklet will show the wiring.

 Compile and Run the program. Test it like EX9.

 To show your understanding of the breadboard, rewire this same circuit to
use 3 less jumper wires.

 The functions to communicate with the 9356 chip are in 9356.c. Since the
data in and data out pins are not used at the same time they can be the same
pin. Modify the circuit and the 9356.c code so both data in and data out use
the same pin on the PIC18F8722.

A

B

FURTHER STUDY

1

2

3

4

8

7

6

5

+5G

CS

CLK

DI

D0

Vcc

Test

ORG

Vss

9
3
5
6

B4 B2 B1 B0C3 C2 C1 C0

CCS, Inc.

 Using the circuit from Exercise 15 enter, compile and test the following program to more
easily test the serial EEPROM:

16 CLOCKING DATA IN AND OUT

 The 9356 device being used has four I/O
connections as shown in this timing diagram.
A diagram like this is typically found in the
device datasheet. The transmission starts
with CS going high on this chip. Then the chip
expects the DI to change while the CLK line
is low; and it is safe to be read while the CLK
is high. Note that the clock pulse before CS
goes high is not required. Open the 93LC56
data sheet using Tools>Internet>Data
sheets for Device Drivers.

CS

CLK

DI

DO

1 10

HIGH-Z

#include <protoalone.h>
#include <stdlib.h>
#include <input.c>
#include <9356.c>

void main() {
 int cmd, address;

 init_ext_eeprom();

 while(TRUE) {
 printf(“\n\n\rEnter address: “);
 address = get_int();

 do {
 printf(“\n\rRead or Write (R, W): “);
 cmd = toupper(getc());
 } while((cmd != ‘R’) && (cmd != ‘W’));

 if(cmd == ‘R’)
 printf(“\n\rValue is %u”,
 read_ext_eeprom(address));
 else if(cmd == ‘W’) {
 printf(“\n\rEnter data: “);
 write_ext_eeprom(address, get_int());
 }
 }
}

18F8722 Exercise Book

 Add a new command to the EX16 program to erase the entire EEPROM. Add
a function erase_ext_eeprom() that uses the chip’s ERAL command.

 The write_ext_eeprom function in 9365.c has a 11ms delay at the end to wait
for the write to complete. Make a new version of this function that, instead of
a fi xed delay, uses the busy check feature described in the data sheet.

A

B

FURTHER STUDY

N
O

T
E

S
 Table 1-4 in the data sheet outlines the command format. All

commands start with a 1 and followed by a 2 or 3 bit command.
Depending on the command there may then be 8 address bits and
8 data bits. Commands in total are either 12 or 20 bits.
The following code makes the CS high, then clocks 20 bits of data out
in accordance with the previous timing diagram. The data is kept in a
three byte array called cmd.
 output_high (CS) ;
 for (i=1;i<=20;++i) {
 output_bit(DI, shift_left(cmd,3,0) ;
 output_high(CLK) ;
 output_low(CLK) ;
 }

The shift_left function shifts all the bits in cmd one position to the left.
The 3 tells the function how many bytes are in cmd and the 0 is the bit
value to shift into the lowest position. The bit shifted out of the highest
position is returned from the function, and in this case then passed to
output_bit. Output_bit() is like output_high/low except that the high/low
is determined at run time by the second parameter.
Open the 9356.c fi le in the drivers directory. Reviewing the code in
write_ext_eeprom() you will see the code to issue a write command.
When the shift is left, the fi rst byte transmitted is cmd[2]. Since there
are 24 bits in cmd and we only need 20, there is an initial shift of 4 bits
to line up before transmission.
Figure 1-1 in the data sheet shows the required times between events.
For example, the time from CS going high to CLK going high is labeled
as Tcss. Table 1-2 shows Tcss needs to be at least 50ns. Not a
problem in the code.









CCS, Inc.

 The previous exercise used 3-4 wires to communicate serially to a chip. That method is
generally referred to as SPI (Serial Port Interface). A popular 2 wire communications bus
that allows multiple devices to use the same two wires was developed by Phillips and is
called I²C. This exercise uses a temperature sensor that communicates via I²C. Enter the
following simple program to use the temperature sensor.

 Because multiple devices can use the same two wires, no device ever drives the wires
high. Pull-up resistors on the wires allow them to fl oat high and devices may ground the
wire to make them low. The two wires are designated SDA and SCL. Using the DS1631
chip wire up the following circuit:

17 USING AN I2C
TEMPERATURE SENSOR

B1 B0 G +5

1

2

4

8

7

6

5

SDA

SCL

3 Tout

GND

VDD

A0

A1

A2

D
S1

63
1

#include <prototype.h>
#include <ds1631.c>

void main() {
 fl oat value;

 init_temp();

 while(TRUE) {
 value = read_full_temp();
 value /= 100.0;
 printf(“%3.2f\n\r”, value);
 delay_ms(1000);
 }
}

18F8722 Exercise Book

 Compile and Run the program. The monitor window should display the temperature
every second. Hold your fi nger on the chip to raise the temperature reading.

 Make a version of this program that lights the green LED if the temperature is at
or below 75, the yellow LED if it is 76-79 and the red LED when it is 80 and up.

 Each byte on the bus is acknowledged. I2C_WRITE returns a 0 if the byte
was accepted. Make a new version of read_temp() that checks the result of
the fi rst I2C_write() and displays an error if the byte was not accepted. Then
change the address from 1001000x to 1001010x and note that the new error is
displayed. Now change the hardware circuit to use the new address.

A

B

FURTHER STUDY

N
O

T
E

S

 Since multiple devices are using the same two wires, each device on
the bus has a 7 bit address. For the DS1631, four of the address bits
are fi xed and the other three may be set via the A0, A1, and A2 pins.
In our case we set them all to 0. This means up to eight of these chips
could be on the same two wire bus.

 Data is transferred over the bus by fi rst sending a unique pattern on
the pins called a start condition. This is followed by the 7 bit address,
and a bit to designate if data is to transfer to or from the master. The
master in our case is the PIC18F8722. This byte is followed by any
number of data types and a stop condition. Some devices allow the
data direction bit without a stop condition. The DS1631 requires a read
command to be sent to it and then the data direction changes and two
bytes are read from it. The following is an extract of the code from
DS1631.C

 i2c_start() ;
 i2c_write(0x90) ; // Address and direction
 i2c_write(0xaa) ; // DS1631 command to read
 i2c_start() ;
 i2c_write(0x91) ; // Address and direction
 datah=i2c_read();
 datal_i2c_read(0) ;
 i2c_stop();

CCS, Inc.

 7 Segment LED units are used as an easy way to display numbers. Each of the 7
segments is an individual LED that can be turned on just as the LEDs on the Prototyping
board. In order to save on I/O pins, it is common to multiplex the LED segments. In this
case, there are two digits. Each segment is connected to the corresponding segment
on the other digit. Only one digit is energized with the correct segments set. After a
short period of time, that digit goes off and the other digit is lit with its segments on. By
alternating very quickly, it will appear that both digits are on all the time and nine I/O pins
are used instead of 16. Connect up the following circuit to accomplish this goal:

18 DRIVING A 7 SEGMENT
LED DISPLAY

N
O

T
E

S

 Each segment is identifi ed with a designator like a1. Segment a is the top
LED and 1 is the fi rst digit. To light this digit, power up pins 16 and 14. To
light the same segment on digit 2 (a2) then power up pin 16 and 13.

 This example does not use the decimal points (DP1 and DP2).
 Unlike the onboard LEDs, there is no built-in current limiting resistor on

these units. Many applications will require a series resistor on each of
the segments. In this case, we use a high current LED and know that
the PIC18F8722 drive capability will ensure the LED segments are not
damaged.

18F8722 Exercise Book

 The following program will count from 1 to 99. Enter and run the program:

#include <protoalone.h>

byte CONST LED_MAP[10] =
{0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x67};

void display_number(int n) {
 output_f(LED_MAP[n/10]);
 output_low(PIN_C0);
 delay_ms(2);
 output_high(PIN_C0);
 output_f(LED_MAP[n%10]);
 output_low(PIN_C1);
 delay_ms(2);
 output_high(PIN_C1);
}

void main() {
 int count=1,i;

 while(TRUE) {
 for(i=0;i<=200;i++)
 display_number(count);
 count = (count==99) ? 1 : count+1;
 }
}

N
O

T
E

S  Unlike the previous programs, this program writes to all I/O pins on
one port at the same time using output_f().

 The LED_MAP array specifi es for each number which segments need
to be on. The fi rst entry (zero) needs segments a, b, c, d, e, f on. This
is F0-F5 or in hex 0x3F.

 The ? : notation was used to make it easy to change the increment
value and range with just this one line.

 Make a version of this program that counts from 00-FF in hex. The hex digits
A, b, C, d, E, F can be displayed using 7 segments.

 Use the DS1631 and this display to make a digital thermometer.

A

B

FURTHER STUDY

CCS, Inc.

 Connect up the circuit to the right using the
NJU6355 real-time clock chip. This chip can
keep accurate date and time using the small
crystal attached to the part. The interface to the
PIC18F8722 is an SPI interface. Internally the
date/time is kept in the chip in BCD.

 Enter and run the following program to demonstrate the real-time clock:

19 REAL-TIME INTERFACING

32 Khz

G3 G B2 B1 B0 +5

1

2

3
4

8

7
6

5

I/O
OSC
OSC

VSS

VCC

Data
CLK

CE

NJU6355

#include <protoalone.h>
#defi ne RTC_DATA PIN_B0
#defi ne RTC_CLK PIN_B1
#defi ne RTC_CE PIN_B2
#defi ne RTC_ID PIN_G3
#include <nju6355.c>
#include <stdlib.h>
#include <input.c>

void set_time() {
 int hour,min;

 printf(“\r\nHour: “); hour=get_int();
 printf(“\r\nMin: “); min=get_int();
 rtc_set_datetime(0,0,0,0,hour,min);
}

void main() {
 int hour,min,sec,last_sec;

 rtc_init();
 while (TRUE) {
 rtc_get_time(hour, min, sec);
 if(sec!=last_sec) {
 printf(“\r\n%02u:%02u:%02u”,hour, min, sec);
 last_sec=sec;
 }
 if(kbhit()&&(getc()==’S’))
 set_time();
 }
}

18F8722 Exercise Book

N
O

TE
S  The kbhit() function returns true if a character comes in the RS-232

port. The && operator evaluates left to right. This means if the kbhit()
returns false, then the getc() is never called. If it were called, the
program would hang here (because there was no character). This
effect is referred to as a short circuit. Not all languages guarantee this,
however, ANSI C does.

 Make a version of this program that starts by asking for an alarm hour and
minute. When the alarm time is reached light the red LED.

 Update the program to do both date and time. See the NJU6355.c fi le for
help on the parameters to rtc_set_datetime().

A

B

FURTHER STUDY

CCS, Inc.

 The external memory interface is a feature of the PIC18F8722 devices that allows
the controller to access external memory devices like Flash, EPROM, and SRAM as
program or data memory. The external memory interface only operates in 16 bit mode.
The programming mode in the confi guration word should be properly set to access the
on-chip and external memory.

 The protoboard has a 64K X 16 5 volts Flash Memory (AT29C1024) and two 32K X 8
5 volts SRAM (M68AF031A). The two SRAMs together constitute 32K X 16 SRAM.

 The following Example will use the external Flash chip. Copy the protoalone.h to
protoexternal.h. Add EMCU to the fuses line. This will set the external microcontroller
mode that allows access to both on-chip and external memories as a single block. The
chip can access the entire on-chip memory; above this, the device accesses external
memory up to the 2-Mbyte program space limit. Execution automatically switches
between the memories as required.

 Create the fi le EX20.c a variation of EX9.c as follows:

 Compile the program and use Tools>ICD to download and run the program. Disconnect
the power from the Prototyping board and then disconnect the ICD. Power up the
Prototyping board and verify that the program runs correctly. Press the reset button and
release. The LEDs should go off and restart at the same count value.

20 USING THE EXTERNAL
MEMORY INTERFACE

#include <protoexternal.h>
#include <utility.c>
#include <at29c1024.c>

Void Main() {
 int count;

 init_ext_fl ash_memory();
 count=read_ext_fl ash_memory(0);
 while(true) {
 show_binary_on_leds(count);
 wait_for_one_press();
 count++;
 write_ext_fl ash_memory(0,count);
 }
}

18F8722 Exercise Book

 Create the fi le EX21.c a variation of EX20.c as follows:
This is the same as the above program except that it uses the SRAM chips instead of
the Flash chips to save the count value.

 Compile the program and verify it is working as before.

N
O

TE
S

 Refer to the at29c1024.c for details on the functions.

N
O

TE
S

 Refer to the driver fi le for more details and functions.
 The functions use the write_external_memory and

read_external_memory built-in functions to read and write to the
specifi c external memory chip. The addresses 0x40000-0x5ffff are
mapped to the Flash memory chip and 0x20000-0x2ffff is mapped to
the SRAM.

 Refer to the external memory section of the datasheet for more details.
 Refer to m68af031.c for details on the functions.

#include <protoexternal.h>
#include <utility.c>
#include <m68af031.c>

Void Main() {
 int count;

 init_ext_sram_memory();
 count=read_ext_sram_memory(0);
 while(true) {
 show_binary_on_leds(count);
 wait_for_one_press();
 count++;
 write_ext_sram_memory(0,count);
 }
}

CCS, Inc.

 The complier provides typemod directive, which can be used to defi ne a memory region
that can be RAM, program memory, or external memory. The usage is:
addressmod(name,read function,write function,start address,end address);

 For example: addressmod (DataEE,DataEE_Read,DataEE_Write,5,0xff);
This would defi ne a region called DataEE, which is between 0x5 and 0xff in the data
EEPROM.

 Create the fi le EX22.c as follows:

 Compile the program and verify that it works.

21 USING ADDRESSMOD TO ACCESS
THE EXTERNAL MEMORY

#include <protoexternal.h>
#include <utility.c>
#include <at29c1024.c>

void ext_fl ash_Read(int32 addr, int8* ram, int bytes) {
 read_block_ext_fl ash_memory(addr,ram,bytes);
}
void ext_fl ash_Write(int32 addr, int8* ram, int bytes) {
 write_block_ext_fl ash_memory(addr,ram,bytes);
}
addressmod(fl ashmem,ext_fl ash_Read,ext_fl ash_Write,5,0xff);
int fl ashmem countm;
void main() {
 int count;
 init_ext_fl ash_memory();
 count=countm;
 while(true) {
 show_binary_on_leds(count);
 wait_for_one_press();
 count++;
 countm=count;
 }

}

18F8722 Exercise Book

 Create EX23.c as a variation of EX22.c as follows:
This is the same as the above program except that is used the SRAM chips instead of
the Flash chips to save the count value.

#include <protoexternal.h>
#include <utility.c>
#include <m68af031.c>

void ext_sram_Read(int32 addr, int8* ram, int bytes) {
 read_block_ext_sram_memory(addr,ram,bytes);
}
void ext_sram_Write(int32 addr, int8* ram, int bytes) {
 write_block_ext_sram_memory(addr,ram,bytes);
}
addressmod(fl ashmem,ext_sram_Read,ext_sram_Write,5,0xff);
int fl ashmem countm;
void main() {
 int count;
 init_ext_sram_memory();
 count=countm;
 while(true) {
 show_binary_on_leds(count);
 wait_for_one_press();
 count++;
 countm=count;
 }
}

N
O

TE
S  The countm variable is defi ned in the memory region, defi ned by

addressmod. Treat countm as any other variable and read and write
it using the regular assignment operator. This makes accessing the
defi ned memory easier because special functions are not needed to
read and write.

 The read and write function in the addressmod directive should follow
the same prototype.

CCS, Inc.

The following diagram is a somewhat minimal circuit for a PIC18F8722
 Notice this chip has fi ve +5V

and ground connections.
Some chips have only one
of each. A 0.1µf capacitor
mounted near the chip is a
good idea and one on either
side of the chip is even
better. This will reduce noise
both to and from the chip.

 The clock circuit here uses
a crystal. With many high
speed crystals the resistor
on clock out prevents the
crystal from being driven.
The capacitor values used
are generally specifi ed in the
crystal specifi cation sheets.
The PIC18F8722 data sheet
will show a number of other
options for the clock.

Troubleshooting
 The MCLR pin must be in a high state for the chip to run. Note the Prototyping board

schematic uses a pushbutton to ground this pin and to reset the chip.
 Most problems involve the clock. Make sure the confi guration fuses are set to the proper

oscillator setting. In the above case, for a 20MHz crystal HS (High Speed) is the proper
setting. In the above circuit, the size of the resistor may need adjustment depending
upon the crystal.

 If the program does not seem to be running, verify 5 Volts on the MCLR pin and the fi ve
power pins.

 Isolate hardware problems from fi rmware problems by running a program with the
following at the start of main () and check B0 with a logic probe or scope:

 while(TRUE) {
 output_low (PIN_B0);
 delay_ms (1000);
 output_high (PIN_B0);
 delay_ms (1000);
 }

PIC18F8722

22 MIGRATING TO YOUR
OWN HARDWARE

18F8722 Exercise Book

The In-Circuit Progamming/Debugging Interface
 To program and/or debug in circuit, two I/O pins (B6, B7) are reserved. If debugging is

not to be done, then these pins may also be used in the target circuit. However, care
must be taken to ensure the target circuit has high impedance during programming.

 The MCLR pin is also used by the programmer and for debugging. Note that during
programming, the voltage on this is 13 volts. The 47K resistor to 5V is sufficient isolation
for the 13V. However, if anything else is connected to the MCLR pin, be sure the 13V will
not damage or interfere.

 The ICD unit requires Vdd from the target. It is easiest to power up the target normally
and then, connect the target board Vdd to the ICD for power. The ICD-S40 is powered by
this pin (5V) and the ICD-U40 uses it to pull up the signals (3V-5V).

 The B3 pin is optional and is not used for programming. However, the Monitor feature
of the debugger does use B3. It is possible to program and debug (without monitor) and
allocate B3 to the target hardware. In this case do not connect B3 to the ICD connector

 Note that the ICD to target cable reverses the pins so the MCLR signal is ICD pin 6
and that connects to the target pin 1.

1 2 3 4 5 6

Vdd

Vdd

47K

MCLR

PGD (usually B7)
PGC (usually B6)
B3 (optional)

VSS

Target ICD connector
Looking into the connector

PIC

Exercise
PICmicro® MCU C: An introduction to
Programming the Microchip PIC® in CCS
by Nigel Gardner

The C Programming Language by
Brian W. Kernighan and Dennis M.
Ritchie (2nd ed.)

3

1.1 The Structure of C Programs
1.2 Components of a C Program
1.3 main()
1.5 #include
1.8 constants
1.11 Macros
1.13 Hardware Compatibility
5.5 While loop
9.1 Inputs and Outputs

1.1 Getting Started
1.4 Symbolic Constants
3.1 Statements and Blocks
3.5 Loops
1.11 The C Preprocessor

4

1.7 Variables
1.10 Functions
2.1 Data Types
2.2 Variable Declaration
2.3 Variable Assignment
2.4 Enumeration
3.1 Functions
3.4 Using Function Arguments
4.2 Relational Operators
5.7 Nesting Program Control Statements
5.10 Switch Statement

1.2 Variables and Arithmetic Expr
2.1 Variable Names
2.2 Data Types and Sizes
2.3 Constants
2.4 Declarations
2.6 Relational and Logical Operators
3.4 Switch
1.7 Functions
1.8 Arguments
4.1 Basics of Functions

5

4.3 Logical Operators
4.4 Bitwise Operators
4.5 Increment and Decrement
5.1 if Statements
5.2 if-else Statements
9.3 Advanced BIT Manipulation

3.2 if-Else
2.8 Increment and Decrement Ops
2.90 Bitwise Operators

6 4.1 Arithmetic Operators 2.5 Arithmetic Operators

7 9.5 A/D Conversion 3.3 Else

References
This booklet is not intended to be a tutorial for the PIC18F8722 or the C programming language.
It does attempt to cover the basic use and operation of the development tools. There are
some helpful tips and techniques covered, however, this is far from complete instruction on C
programming. For the reader not using this as a part of a class and without prior C experience the
following references should help.

8
5.4 For Loop
6.1 One-Dimensional Arrays

1.3 The For Statement
1.6 Arrays
2.10 Assignments Operators and Exp

10
1.6 printf Function
9.6 Data Comms/RS-232

1.5 Character Input and Output
2.6 Loops-Do-While
7.1 Standard Input and Output
7.2 Formatted Output - printf

11
6.2 Strings
6.4 Initializing Arrays
8.1 Introduction to Structures

7.9 Character Arrays
6.1 Basics of Structures
6.3 Arrays of Structures

13 9.4 Timers

14 2.6 Type Conversion
9.11 Interrupts

2.7 Type Conversions

16 9.8 SPI Communications

17 9.7 I2C Communications

18 5.2 ? Operator 2.11 Conditional Expressions
19 4.6 Precedence of Operators 2.12 Precedence and Order Eval

Comprehensive list of PIC® MCU
Development tools and information www.mcuspace.com

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

On The Web

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small
debug program in the chip. This is a basic debug tool that takes up some of the chip’s
resources (I/O pins and memory). An emulator replaces the chip with a special connector
that connects to a unit that emulates the chip. The debugging works in a simulator manner
except that the chip has all of its normal resources, the debugger runs faster and there are
more debug features. For example an emulator typically will allow any number of breakpoints.
Some of the emulators can break on an external event like some signal on the target board
changing. Some emulators can break on an external event like some that were executed
before a breakpoint was reached. Emulators cost between $500 and $3000 depending on the
chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand
alone device programmer may be used to program all the chips. These programmers will
use the .HEX file output from the compiler to do the programming. Many standard EEPROM
programmers do know how to program the Microchip parts. There are a large number of
Microchip only device programmers in the $100-$200 price range. Note that some chips
can be programmed once (OTP) and some parts need to be erased under a UV light before
they can be re-programmed (Windowed). CCS offers the Mach X which is a stand-alone
programmer and can be used as an in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources.
Some have an ICD interface and others simply have a socket for a chip that is externally
programmed. Some boards have some advanced functionality on the board to help design
complex software. For example, CCS has a Prototyping board with a full 56K modem on
board and a TCP/IP stack chip ready to run internet applications such as an e-mail sending
program or a mini web server. Another Prototyping board from CCS has a USB interface chip,
making it easy to start developing USB application programs..

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip.
A simulator offers all the normal debug capability such as single stepping and looking at
variables, however there is no interaction with real hardware. This works well if you want to
test a math function but not so good if you want to test an interface to another chip. With the
availability of low cost tools, such as the ICD in this kit, there is less interest in simulators.
Microchip offers a free simulator that can be downloaded from their web site. Some other
vendors offer simulators as a part of their development packages..

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
 · Specify operational settings at the execution level
 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface
 · Simply point, click and program
 · Additions to HEX file organization include associating comments or a graphic image
 to a file to better ensure proper file selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics
 · Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specific driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a file list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™
 · All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help file for additional assistance.

PIC18F8722

�
�

�
�

�
�

�
�

�
��

��
��

��
�

�
�

�
�

�
�

�
��

�
��

�
�

�

�
�

�
�

�
�

�
�

�
��

��
��

��
�

�
�

�
�

�
�

�
��

��
�

�

�
�

��
�

�

��
�

��
�

�
�

��
�

�
�

��
�

�
�

�

��
�

��
�

��
�

��
�

�
�

�
��

�
�

��
�

�
��

��

��
�

�
�

�
�

�
��

��
�

�
��

�
�

�
�

�
���

�

�
��

�
�

�
�

�
���

�

�
�

�
��

��
��

� �
�

��
�

��
�

�
�

��
�

��
��

�
��

��
��

��
��

��
�

�

�
�

��
�

�
�

