
Development Kit
For the PIC® MCU

Exercise Book

PIC12F683
March 2010

PIC® and PICmicro® are registered trademarks of Microchip Technology Inc. in the USA and in other countries.

Copyright © 2010 Custom Computer Services, Inc.
All rights reserved worldwide. No part of this work may be reproduced or copied in any form
by any means-electronic, graphic or mechanical, including photocopying, recording, taping or
information retrieval systems-without written permission.

Custom Computer Services, Inc.
Brookfield, Wisconsin, USA
262-522-6500

Custom Computer Services, Inc.
proudly supports the Microchip
brand with highly optimized
C compilers and embedded
software development tools.

CCS, Inc.

1 UNPACKING AND INSTALLATION

Inventory
 Use of this kit requires a PC with Windows 95, 98, ME, NT, 2000 or XP. The PC must

have a spare 9-Pin Serial or USB port, a CD-ROM drive and 75 MB of disk space.

 The diagram on the following page shows each component in the PIC12F683 kit. Ensure
every item is present.

Software
 Insert the CD into the computer and wait for the installation program to start. If your

computer is not set up to auto-run CDs, then select My Computer and double-click on
the CD drive.

 Click on Install and use the default settings for all subsequent prompts by clicking NEXT,
OK, CONTINUE…as required.

 Identify a directory to be used for the programs in this booklet. The install program will have
created an empty directory c:\program fi les\picc\projects that may be used for this purpose.

 Select the compiler icon on the desktop. In the PCW IDE, click Help>About and verify
a version number is shown for the IDE and PCM to ensure the software was installed
properly. Exit the software.

Hardware
 Connect the PC to the ICD(6) using the USB cable.(1) Connect the prototyping board (10) to

the ICD using the modular cable. Plug in the DC adaptor (9) to the power socket and plug
it into the prototyping board (10). The fi rst time the ICD-U is connected to the PC, Windows
will detect new hardware. Install the USB driver from the CD or website using the new
hardware wizard. The driver needs to be installed properly before the device can be used.

 The LED should be red(2) on the ICD-U to indicate the unit is connected properly.

 Run the Programmer Control Software by clicking on the CCSLOAD icon on the desktop.
Use CCSLOAD Help File for assistance.

 The software will auto-detect the programmer and target board and the LED should be
illuminated green. If any errors are detected, go to Diagnostic tab. If all tests pass, the
hardware is installed properly.

 Disconnect the hardware until you are ready for Chapter 4. Always disconnect the power
to the Prototyping board before connecting/disconnecting the ICD or changing the
jumper wires to the Prototyping board.

(1) ICS-S40 can also be used in place of ICD-U. Connect it to an available serial port on the PC using the 9
pin serial cable. There is no driver required for S40.

(2) ICD-U40 units will be dimly illuminated green and may blink while connecting.

PIC12F683 Exercise Book

PIC
12F

683

 1 Storage box
 2 Exercise booklet
 3 CD-ROM of C compiler (optional)
 4 Serial PC cable to Prototyping board
 5 Modular ICD cable to Prototyping board
 6 ICD unit for programming and debugging of the PIC® MCU
 7 Parts box includes:
 PIC12F683 chip
 Green, Yellow and Red LEDs
 Thermistor
 Two 10K resistors
 Jumpers to connect the Prototyping board to the breadboard
 8 USB (or Serial) PC to ICD cable
 9 AC Adaptor (9VDC)
 10 Prototyping board with a PIC12F683 processor chip (See inside front and back cover for
 details on the board layout and schematic)
 11 Breadboard for prototyping circuits
 12 IC Extractor

ICD-U64

PIC
12F

683 PIC
12F

683

CCS, Inc.

CHAPTER

Editor
 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>Open>Source File. Select the fi le: c:\program fi les\picc\examples\ex_stwt.c

 Scroll down to the bottom of this fi le. Notice the editor shows comments, preprocessor
directives and C keywords in different colors.

 Move the cursor over the Set_timer0 and click. Press the F1 key. Notice a Help fi le
description for set_timer0 appears. The cursor may be placed on any keyword or built-in
function and F1 will fi nd help for the item.

 Review the editor special functions by clicking on Edit. The IDE allows various standard
cut, paste and copy functions.

 Review the editor option settings by clicking on Options>Editor Properties. The
IDE allows selection of the tab size, editor colors, fonts, and many more. Click on
Options>Toolbar to select which icons appear on the toolbars.

Compiler
 Use the drop-down box under Compile to select the compiler. CCS offers different

compilers for each family of Microchip parts. All the exercises in this booklet are for the
PIC12F683 chip, a 14-bit opcode part. Make sure PCM 14 bit is selected in the drop-
down box under the Compiler tab.

 The main program compiled is always shown in the bottom of the IDE. If this is not the
fi le you want to compile, then click on the tab of the fi le you want to compile. Right click
into editor and select Make fi le project.

 Click Options>Project Options>Include Files… and review the list of directories
the compiler uses to search for included fi les. The install program should have put two
directories in this list: devices and drivers.

 Normally the fi le formats need not be changed and global defi nes are not used in these
exercises. To review these settings, click Options>Project Options>Output Files and
Options>Project Options>Global Defi nes.

 Click the compile icon to compile. Notice the compilation box shows the fi les created
and the amount of ROM and RAM used by this program. Press any key to remove the
compilation box.

2 USING THE INTEGRATED
DEVELOPMENT ENVIRONMENT (IDE)

PIC12F683 Exercise Book

Viewer
 Click Compile>Symbol Map. This file shows how the RAM in the micro-controller is used.

Identifiers that start with @ are compiler generated variables. Notice some locations are used
by more than one item. This is because those variables are not active at the same time.

 Click Compile>C/ASM List. This file shows the original C code and the assembly code
generated for the C. Scroll down to the line:
 int_count=INTS_PER_SECOND;

 Notice there are two assembly instructions generated. The first loads 4C into the W
register. INTS_PER_SECOND is #defined in the file to 76. 4C hex is 76 decimal. The
second instruction moves W into memory. Switch to the Symbol Map to find the memory
location where int_count is located.

 Click View>Data Sheet, then View. This brings up the Microchip data sheet for the
microprocessor being used in the current project.

Click here for the file menu. Files and Projects are created,
opened, or closed using this menu.

Place cursor here for slide out boxes.
All of the current project’s source and
output files can be seen here.

Compile ribbon.

Place cursor over each icon
and press F1 for help.

Click the help icon for
the help menu. The technical
support wizard and download
manager are accessed using
this menu.

Compiles current selected unit, does NOT link/build
into a HEX file.

Quick view of supported devices.

Compiles all units that have changed since last build,
links/builds into a HEX file.

Compiles all units regardless if they have changed since
last build, links/builds into a HEX file.

CCS, Inc.

A0 Analog Input setup_ADC_ports(AN0_ANALOG);

Comparator + input setup_ADC_ports (NO_ANALOGS);(1)
setup_comparator(A0_A1);(2)

General I/O setup_ADC_ports (NO_ANALOGS);(1)
setup_comparator(NC_NC);(1)
enable_interrupts(INT_RA0);(3)

A1 Analog Input setup_ADC_ports (AN1_ANALOG);

Comparator - input setup_ADC_ports (NO_ANALOGS);(1)
setup_comparator(A0_A1);(2)

Ref Voltage for ADC setup_ADC_ports (AN1_ANALOG | VSS_VREF);(2)

General I/O setup_ADC_ports (NO_ANALOGS);(1)
setup_comparator(NC_NC);(1)
enable_interrupts(INT_RA1);(3)

 Key features of the PIC12F683:
 Small 8 pin package (up to 6 I/O pins)
 Selectable frequency range of 8 MHz to 31 KHz
 Four channel, 10 bit A/D converter
 Analog comparator
 Three timers
 Operates 2V to 5 V

 Memory:
 1024 words of reprogrammable program memory
 128 bytes of RAM
 256 bytes of data EEPROM

 Because of the small number of pins and numerous features on this chip each pin can
have a number of different functions. It is very important to be sure the chip is properly
programmed to use each pin in the desired fashion. The following table identifi es
each pin, what it can be used for and how to use it in that way. Note that the data
sheet identifi es the I/O pins as GP0-GP5. In the compiler and this booklet the pins are
identifi ed as A0-A5 to make the code more compatible with other chips.

 For debugging Microchip makes a 14-pin version of the PIC12F683. It is a
PIC12F683-ICD. The extra pins allow an ICD to be connected to the chip with the
normal eight pins are used for the application under development. The prototyping board
has a switch to connect the ICD unit to either the 14-pin socket for debugging or the 8-
pin socket for programming an 8-pin part.

PIC12F683 OVERVIEW3

PIC12F683 Exercise Book

N
O

TE
S

 In addition to the above pin usage at run time, the eight-pin part can use
A0, A1 and A3 for in-circuit programming when the chip is not running.

A2 Analog Input setup_ADC_ports (AN2_ANALOG);
setup_timer0(RTCC_INTERNAL);

Comparator Output setup_ADC_ports (NO_ANALOGS);(1)
setup_timer0(RTCC_INTERNAL);
setup_comparator(A0_A1_OUT_ON_A2);(2)

Timer 0 Clock Input setup_timer0(RTCC_EXT_L_TO_H); // or H_TO_L

General I/O setup_ADC_ports (NO_ANALOGS);(1)
setup_timer0(RTCC_INTERNAL);(1)
setup_comparator(NC_NC);(1)
enable_interrupts(INT_EXT);(3)
ext_int_edge(L_TO_H);(3)

A3 Chip Reset (MCLR) #fuses MCLR

General Input #fuses NOMCLR
enable_interrupts(INT_RA3);(3)

A4 Analog Input setup_ADC_ports (AN3_ANALOG);

Timer 1 Run/Pause #fuses INTRC_IO
setup_timer1 (T1_INTERNAL | T1_GATE);(2)

Crystal / Resonator #fuses XT(4)

Buffered Clock/4 Output #fuses INTRC(5)

General I/O #fuses INTRC_IO
setup_ADC_ports (NO_ANALOGS);(1)

enable_interrupts(INT_RA4);(3)

A5 Timer 1 Clock Input setup_timer1(T1_EXTERNAL);

Crystal or Osc Input #fuses XT(4)

General I/O #fuses INTRC_IO(6)
enable_interrupts(INT_RA5);(3)

(1) or any option set that excludes the pin
(2) or any option set that includes the pin
(3) Optional - Use only if an interrupt is required for the pin
(4) Any option other than INTRC or INTRC_IO
(5) Any option other than INTRC_IO or RC_IO
(6) INTRC or INTRC_IO

CCS, Inc.

4 COMPILING AND
RUNNING A PROGRAM

#include <12f683.H>
#device ICD=TRUE
#fuses intrc_io,nomclr,nowdt,noprotect
#use delay(clock=4000000)

#defi ne RED_LED PIN_A4
#defi ne YELLOW_LED PIN_A5
#defi ne GREEN_LED PIN_A2

void main() {
 setup_comparator(NC_NC);
 setup_adc_ports(NO_ANALOGS);
 do {
 output_low(RED_LED);
 delay_ms(500);
 output_high(RED_LED);
 output_low(YELLOW_LED);
 delay_ms(500);
 output_high(YELLOW_LED);
 output_low(GREEN_LED);
 delay_ms(500);
 output_high(GREEN_LED);
 } while(TRUE);
}

 Open the PCW IDE. If any fi les are open, click File>Close All

 Click File>New>Source File and enter the fi lename EX4.C

 Type in the following program and Compile.

 Connect the ICD to the Prototyping board using the modular cable, and connect the
ICD to the PC. Power up the Prototyping board.

 Click Debug>Enable Debugger and wait for the program to load.

 Click the green go icon:

PIC12F683 Exercise Book

 Note that the “output_low” turns the LED on because the other end of the
LED is +5V.

 PIN_A3 reads a 1 when the pushbutton is not pressed.

A

B

Notes

 Expect the debugger window status block to turn yellow indicating the program is
running.

 The green LED on the Prototyping board should be flashing. One second on and one
second off.

 The program can be stopped by clicking on the stop icon:

 Add the following to the #defines:
 #define PUSHBUTTON PIN_A3

 Add the function to the program:
 Wait_for_one_press() {
 while(input(PUSHBUTTON)) ;
 while(!input(PUSHBUTTON)) ;
 }

 Replace each delay_ms(500) with the following line:
 Wait_for_one_press();

 Save the program as EX4A.C.

 Compile and run the program. The LEDs on the protoboard should now only change
when the button is pressed.

ICD-U64

CCS, Inc.

5 DEBUGGING

 Open EX4.C and start the debugger Debug>Enable Debugger.

 Click the reset icon to ensure the target is ready.

 Click the step-over icon until wait _ for _ one _ press () is highlighted. This is the
step over command. Each click causes a line of C code to be executed. The highlighted
line has not been executed, but the line about to be executed.

 Step over the wait _ for _ one _ press and press the pushbutton. Notice the debugger
now stops since the function terminates. Notice that one click executed the entire
function. This is the way step-over works.

 Click the Watch tab, then the add icon to add a watch. Enter count or choose count
the variables from list, then click Add Watch. Notice the value shown. Continue to step
over through the loop a few more times (press the button as required) and notice the
count watch increments.

 Step-over until the call to show _ binary _ on _ leds(count); is highlighted. This
time, instead of step over, use the standard step icon several times and notice the
debugger is now stepping into the function.

 Click the GO icon to allow the program to run. Press the prototype button a couple
of times to verify that the program is running normally. Click the stop icon to halt
execution. Notice the C source line that the program stopped on. This is the line were the
program is waiting for a button press.

 In the editor, click on show _ binary _ on _ leds(count); to move the editor cursor
to that line. Then click the Breaks tab and click the add icon to set a breakpoint. The
debugger will now stop every time that line is reached in the code. Click the GO icon
and then press the prototype button. The debugger should now stop on the breakpoint.
Repeat this a couple of times to see how the breakpoint works. Note that the ICD with
PIC16 chips only allow one breakpoint at a time.

 Click Compile >C/ASM list. Scroll down to the highlighted line. Notice that one
assembly instruction was already executed for the next line. This is another side effect of
the ICD debugger. Sometimes breakpoints slip by one ASM instruction.

 Click the step-over icon a few times and note that when the list fi le is the selected
window, the debugger has executed one assembly instruction per click instead of one
entire C line.

PIC12F683 Exercise Book

 Compile the program and step-over until the c=a+b is executed. Add a watch for c and
the expected value is 16.

 Step-over the subtraction and notice the value of c. The int data type by default is
not signed, so c cannot be the expected –6. The modular arithmetic works like a car
odometer when the car is in reverse only in binary. For example, 00000001 minus 1 is
00000000, subtract another 1 and you get 11111111.

 Reset and again step up to the c=a+b. Click the Eval tab. This pane allows a one time
expression evaluation. Type in a+b and click Eval to see the debugger and calculate the
result. The complete expression may also be put in the watch pane as well. Now enter
b=10 and click Eval. This expression will actually change the value of B if the “keep side
effects” check box of the evaluation tab is checked. Check it and click Eval again. Step
over the addition line and click the Watch tab to observe the c value was calculated with
the new value of b.

 Close all fi les and start a new fi le EX5.C as follows:

#include <12f683.h>
#device ICD=TRUE
#fuses intrc_io,nomclr, nowdt,noprotect
#use delay(clock=4000000)

void main() {
 int a,b,c;

 a=11;
 b=5;
 c=a+b;
 c=b-a;
 while(TRUE);
}

CCS, Inc.

 The PIC12F683 chip has four pins that may be used to read an analog voltage. The
following is a simple program (EX6.c) to read one analog pin.

 Compile and Run the program. Verify that the Prototyping board knob (A0) is turned so
the green LED is on when it is low, the red LED when high and the yellow LED for a small
region in the center.

6 ANALOG INPUT

#include <12f683.H>
#device ICD=TRUE
#fuses intrc_io,nomclr,nowdt,noprotect
#use delay(clock=4000000)

#defi ne RED_LED PIN_A4
#defi ne YELLOW_LED PIN_A5
#defi ne GREEN_LED PIN_A2
#defi ne cutoff 128 // 2.5 Volts
#defi ne neutral_zone 25 // 0.5 Volts

void main() {
 int reading;

 setup_adc_ports(AN0_ANALOG);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);

 while(TRUE) {
 output_high(GREEN_LED);
 output_high(YELLOW_LED);
 output_high(RED_LED);
 reading = read_adc();
 if(reading<(cutoff-neutral_zone/2))
 output_low(GREEN_LED);
 else if (reading>(cutoff+neutral_zone/2))
 output_low(RED_LED);
 else
 output_low(YELLOW_LED);
 delay_ms(100);
 }
}

PIC12F683 Exercise Book

N
O

T
E

S
 By default, the analog to digital converter is 8 bits. Thus, a range of 0 to

5 volts analog is represented by the numbers 0-255. The A/D reading
can be converted to volts by the formula:

 Volts = reading*(5.0/255)
 The setup_adc_ports function call determines what pins are set to be

analog inputs. The setup_adc function call determines how fast the
conversion is done. The internal clock option uses an internal RC clock.
Although the timing is not exact, it is long enough for an accurate con-
version. The time can be based off the instruction clock for more pre-
cise timing.

 The set_adc_channel function sets the A/D converter to channel 0 (AN0
or A0). This switches an internal mux in the part, but does not start an
A/D conversion. Even though a conversion has not started, there is a
small capacitor in the chip that must charge up after the port switch and
before the voltage is read. This is fast with a low impedance input, but
for a higher impedance input, a small delay should be put in after the
channel is changed.

 The call to read_adc starts a conversion, waits for it to complete and
returns the result. The conversion time is around 20µs.

CCS, Inc.

 The PIC12F683 has one internal analog comparator. When the analog voltage on the
+ input is greater than the - input the output will be high. The inputs can either be a pin
on the chip or an internal voltage reference. The output can be a pin on the chip, an
interrupt or just a bit in a register than can be pulled.

 Enter, compile and load the following program:

 Run the program and notice that when POT A0 is less than POT A1 that LED A2 (green)
is on. After initialization the software in this program does nothing. The hardware is
doing it all.

 Add the following code to the inside of the while loop:

7 USING THE COMPARATOR

#include <12f683.H>
#device ICD=TRUE
#fuses intrc_io,nomclr,nowdt,noprotect
#use delay(clock=4000000)

void main() {
 setup_adc_ports(NO_ANALOGS);
 setup_comparator(A0_A1_OUT_ON_A2);

 while(TRUE) {
 }
}

if(C1OUT)
output_low(PIN_A4); // Red LED
else
output_high(PIN_A4); // Red LED

PIC12F683 Exercise Book

 Compile and run the program. The C1OUT variable will be true if the comparator output
is high. This should set the red LED on when the comparator output is high (opposite of
the green LED).

 There are two formulas for the internal voltage reference, high and low:
HIGH: Voltage = Vdd/4 + N*(Vdd/32)

 LOW: Voltage = N*(Vdd/24)
In order to set the voltage reference to 2.03 volts using the high range (with Vdd=5V) set
N to 5.

 Replace the setup_comparator line in the program with the following:

 Compile and run the program. This should light the green LED on when the POT A1 is
set greater than 2.03V and the red LED otherwise.

setup_comparator(A1_VR_OUT_ON_A2);
setup_vref(VREF_HIGH | 5);

CCS, Inc.

 The PIC12F683 has 256 bytes of internal data EEPROM. This memory retains the data
even when the power is removed.

 RS-232 is a popular serial communications standard used on most PCs and many
embedded systems. Two wires are used (in addition to ground), one for outgoing data
and one for incoming data. The top switch on the prototyping board is used to route A4
and A5 to the RS232 level converter instead of the LEDs.

 Create the fi le EX8.c as follows:

8 RS-232 AND INTERNAL
DATA EEPROM

#include <12f683.H>
#device ICD=TRUE
#fuses intrc_io,nomclr,nowdt,noprotect
#use delay(clock=4000000)
#use RS232(baud=9600, xmit=PIN_A5, rcv=PIN_A4)
#include <input.c>

void main() {
 int count,i,j,address,value;

 count = read_eeprom(0);
 do {
 printf(“\r\n\nEEPROM:\r\n”);
 for(i=0; i<=7; ++i) {
 for(j=0; j<=15; ++j)
 printf(“%2x “, read_eeprom(i*16+j));
 printf(“\n\r”);
 }
 printf(“\r\nLocation to change: “);
 address = gethex();
 printf(“\r\nNew value: “);
 value = gethex();

 write_eeprom(address, value);

 } while (TRUE);
}

PIC12F683 Exercise Book

 Connect the prototyping board to the PC as shown above. Move the top switch position
to RS-232 and bottom switch position to debug as noted on board silkscreen.

 Connect the serial cable to a second port on the PC or a dump terminal and run a serial
I/O program. Set the correct port and baud rate settings.

 Power up the proto board, compile the program, enable the debugger and run the
program. A dump of the data EEPROM should appear. Enter an address and new value
to change a byte.

 Exit the Debugger. Remove power and reconnect the power to the board. Enable the
debugger and run the program. Notice the EEPROM shows the last values written.
Change the values, cycle power and verify the data is retained.

N
O

T
E

S

 The fi rst argument to read/write _eeprom is the address in the EEPROM
to write the byte to. The PIC12F683 part ranges from 0 to 255.

 There is a limit as to how many times a given location in the data
EEPROM can be written to. For example, the PIC12F683 chip allows
1,000,000 times. For this reason, a program should be designed not to
write any more often than is necessary. For example, if the volume set-
ting for a TV is being saved, one might wait until there are no changes
for 5 seconds before saving a new value to EEPROM. Some system
designs can give an early warning on power down and the program can
only save to EEPROM at power down.

CCS, Inc.

 The PIC12F683 has three built-in timers. Each timer has a different set of features. The
following example will use Timer #1 to measure the time it takes to execute some C
code.

 Create the fi le EX9.c as follows:

 Compile and Run the program. Check the monitor tab to see the result.

 This number is the number of timer ticks that it took to set and read the timer. The
T1_INTERNAL indicates the instruction clock is the source for the timer. The instruction
clock is the oscillator divided by 4, or in our case, 0.2ms. This time represents the
overhead of our timer code and may now be used in a more useful example.

 Modify the program as follows and replace the ??? with the number of ticks determined
in the above program.

9 TIMERS

#include <12f683.h>
#device ICD=TRUE
#fuses intrc_io,nomclr, nowdt,noprotect
#use delay(clock=4000000)
#use RS232(baud=9600, xmit=PIN_A5, rcv=PIN_A4)

void main() {
 long time;

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_1);
 set_timer1(0);

 time = get_timer1();
 printf(“Time in ticks is %lu\r\n”,time);
 while(TRUE);
}

PIC12F683 Exercise Book

 Compile and run the program. Check the signal output to see the result.

#include <12f683.h>
#device ICD=TRUE
#fuses intrc_io,nomclr, nowdt,noprotect
#use delay(clock=4000000)
#use RS232(baud=9600, xmit=PIN_A5, rcv=PIN_A4)

void main() {
 long time;
 long a,b,c;

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_1);
 set_timer1(0);
 a=b*c;
 time = get_timer1();
 time -= ???; // subtract overhead
 printf(“Time is %lu microseconds.\r\n”, time);
 while(TRUE);
}

N
O

T
E

S

 Since “time” represents the number of 1 microsecond ticks that it takes to do *a=b*c”,
then time is the number of microseconds it takes to do that one line of C code.

 All the timers on the PIC12F683 count up and when the maximum value is reached, the
timer restarts at 0. The set_ timer1(0) resets the timer to 0. Timer 1 is 16 bits and the
range is 0 to 65535. This means it will overfl ow every 65535us. This is the largest time
the program will be able to measure.

 If using T1_EXTERNAL instead of INTERNAL, then the timer would increment every
time pin A5 cycled. This makes it more of a counter.

 If using T1_DIV_BY_2 instead of BY_1, then the timer would increment once for every
2 instruction clocks. This makes the timer tick 2us and the range of the timer is now
131070us.

 The following is a summary of the timers on the PIC12F683 chip:

#0 Input is Instruction Clock or external pin
Range is 0-255
Input can be divided by 1,2,4,8,16,32,64,128,256
Can generate interrupt on each overfl ow

#1 Input is Instruction Clock or external pin
Range is 0-65535
Input can be divided by 1,2,4,8
Can generate interrupt on each overfl ow

#2 Input is Instruction Clock only
Range can be programmed from 0-1 to 0-255
Input can be divided by 1,4,16
Can generate interrupt on 1-16 overfl ows

CCS, Inc.

 An interrupt is a specifi c event that causes the normal program execution to be
suspended wherever it is and an interrupt function is executed. Normal program
execution continues when the interrupt function returns. The PIC12F675 has a number of
interrupt sources such as a timer overfl ow, a change on a pin, and external interrupt. Use
View>Valid Interrupts for a complete list of interrupts for this chip.

 In this exercise, the timer 1 overfl ow interrupt will be used to extend the timer 1 timer to
see all the valid interrupts from 16 bits to 32 bits by counting the number of times the
timer overfl ows. Create the fi le EX10.c as follows:

10 INTERRUPTS

#include <12f683.h>
#device ICD=TRUE
#fuses intrc_io,nomclr, nowdt,noprotect
#use delay(clock=4000000)
#use RS232(baud=9600, xmit=PIN_A5, rcv=PIN_A4)

#defi ne PUSH_BUTTON PIN_A3
int16 overfl ow_count;

#int_timer1
void timer1_isr() {
 overfl ow_count++;
}

void main() {
 int32 time;

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_1);
 enable_interrupts(int_timer1);
 while(TRUE) {
 enable_interrupts(global);

 while(input(PUSH_BUTTON));// Wait for press
 set_timer1(0);
 overfl ow_count=0;

 while(!input(PUSH_BUTTON));//Wait for release
 disable_interrupts(global);
 time = get_timer1();
 time = time + ((int32)overfl ow_count<<16);
 time -= 15; // subtract overhead
 printf(“Time is %lu.%06u seconds.\r\n”,
 time/1000000, (time%1000000));
 }
}

PIC12F683 Exercise Book

 Compile and Run the program. Press the button, release, and note the time it was held
down is shown to six decimal places in the Monitor pane.

Make a version of this program that prints in the format
 MM:SS.FFFFFF
 Where MM is minutes, SS is seconds and FFFFFF is fractions of a second.
B Add a second interrupt using timer 0 to interrupt every 13.1ms. In the

interrupt routine, count interrupts and when 76 interrupts have happened, do
a putc(‘.’);. This should display a period every second while interrupts are
enabled.

A

FURTHER STUDY

N
O

T
E

S

 The interrupt function is designated by preceding it with #INT_TIMER1. A
number of interrupt functions can be specifi ed by preceding each with the
proper directive like #INT_EXT for the external interrupt pin A2.

 An interrupt must be specifi cally enabled (via enable interrupts) and inter-
rupts must be globally enabled (via enable_interrupts(GLOBAL)). The
GLOBAL enable/disable control whether any interrupts are serviced.

 Notice interrupts are disabled before the timer is read and combined
with the overfl ow count. This is done to prevent the following situation:
 The timer value is read and it is 65535

 The overfl ow interrupt happens and the counter is incremented to 1
 The program continues and reads the counter as 1

 The time is assumed to be 65536+65535 when in fact the correct
 time is 65535
 If interrupts are disabled and an interrupt event happens, then the

interrupt function will be called when interrupts are enabled. If multiple
interrupt events of the same type happen while interrupts are disabled,
then the interrupt function is called only once when interrupts are
enabled.

 The %06lu format specifi er is the same as %6lu except leading zeros
are printed.

CCS, Inc.

 The prototyping board can be used to program a eight-pin PIC12F683 chip. Load the
EX4A.C program. Remove the #device ICD=TRUE line, add the following before the
while loop and save the fi le as EX11.C.
 port_a_pullups(8); // Turn on pull-up on A3

 Remove the power from the prototyping board and insert the PIC12F683 eight-pin chip
as shown in the diagram on the opposite page.

 Make sure the bottom switch is in the PROGRAM position and power up the board.

 Compile the EX11.C program.

 Use Tools>ICD to burn the program into the chip.

 Remove power, Use the IC extractor to remove the chip.

 Use the white breadboard to wire up the circuit as shown in the following diagram:

11 STAND-ALONE PROGRAMS

PIC12F683 Exercise Book

 The Prototyping board is now used only to supply 5V to the breadboard. First, make sure
the board is wired up correctly, then power up the breadboard to test the program.

 Verify the program works as it did in Chapter 4.

+
A5
A4
A3 A2

A1
A0
G

LED A4 POT A0

POT A1

LED A5

LED A2

Push
Button
A3

Power
9V DC

ICD
Connector

RS-232
A4, A5

Use for

programming

8 pin chips only

Debug using
ICD and

14 pin chip

Debug using
ICD and

8 pin socket

A4, A5
connected

to LEDs

Debug using
ICD and

8 pin socket

CCS, Inc.

 The thermistor included in this kit changes resistance with temperature. The following
program will read the temperature (analog voltage) and light an LED depending on
whether the temperature is going up, down or unchanged.

 Enter the program and compile.

STAND-ALONE PROGRAM
WITH A THERMISTOR12

#include <12f683.H>
 #device ADC=10
#fuses intrc_io,nomclr,nowdt,noprotect
#use delay(clock=4000000)

 #defi ne RED_LED PIN_A4
 #defi ne YELLOW_LED PIN_A5
 #defi ne GREEN_LED PIN_A2

 void main() {
 long reading,last_reading;

 setup_adc_ports(AN0_ANALOG);
 setup_adc(ADC_CLOCK_INTERNAL);
 set_adc_channel(0);
 delay_ms(1000);
 last_reading = read_adc();

 while(TRUE) {
 port_a_pullups(8);
 output_high(GREEN_LED);
 output_high(YELLOW_LED);
 output_high(RED_LED);
 reading = read_adc();
 if(reading<last_reading)
 output_low(GREEN_LED);
 else if (reading>last_reading)
 output_low(RED_LED);
 else
 output_low(YELLOW_LED);
 last_reading = reading;
 delay_ms(2000);
 }
 }

PIC12F683 Exercise Book

 Remove power, insert the eight-pin DIP in the prototyping board (use the IC extractor
whenever removing the chip).

 Use Tools>ICD to burn the program into the chip.

 Use the white breadboard to wire up the circuit as shown in the following diagrams:

 Make sure the board is wired up correctly, then power up the unit.

 Verify the program works by first squeezing the thermistor with your fingers to heat it up,
then allowing it to cool.

This booklet is not intended to be a tutorial for the C programming language. It does attempt
to cover the basic use and operation of the development tools. There are some helpful tips
and techniques covered, however, this is far from complete instruction on C programming.
For the reader not using this as a part of a class and without prior C experience the following
references should help.

Exercise
PICmicro® MCU C: An introduction to
Programming the Microchip PIC® in

CCS by Nigel Gardner

The C Programming Language by
Brian W. Kernighan and

Dennis M. Ritchie (2nd ed.)
3 1.1 The structure of C Programs

1.2 Components of a C Program
1.3 main()
1.5 #include
1.8 constants
1.11 Macros
1.13 Hardware Compatibility
5.5 While loop
9.1 Inputs and Outputs

1.1 Getting Started
1.4 Symbolic Constants
3.1 Statements and Blockx
3.5 Loops
1.11 The C Preprocessor

4 1.7 Variables
1.10 Functions
2.1 Data Types
2.2 Variable Declaration
2.3 Variable Assignment
2.4 Enumeration
3.1 Functions
3.4 Using Function Arguments
4.2 Relational Operators
5.7 Nesting Program Control Statements
5.10 Switch Statement

1.2 Variables and Arithmetic Expr
2.1 Variable Names
2.2 Data Types and Sizes
2.3 Constants
2.4 Declarations
2.6 Relational and Logical Operators
3.4 Switch
1.7 Functions
1.8 Arguments
4.1 Basics of Functions

5 4.3 Logical Operators
4.4 Bitwise Operators
4.5 Increment and Decrement
5.1 if Statements
5.2 if-else Statements
9.3 Advanced BIT Manipulation

3.2 if-Else
2.8 Increment and Decrement Ops
2.90 Bitwise Operators

6 4.1 Arithmetic Operators 2.5 Arithmetic Operators

7 9.5 A/D Conversion 3.3 Else

References

8 5.4 For Loop
6.1 One-Dimensional Arrays

1.3 The For Statement
1.6 Arrays
2.10 Assignments Operators and Exp

10
1.6 printf Function
9.6 Data Comms/RS-232

1.5 Character Input and Output
2.6 Loops-Do-While
7.1 Standard Input and Output
7.2 Formatted Output - printf

11 6.2 Strings
6.4 Initializing Arrays
8.1 Introduction to Structures

7.9 Character Arrays
6.1 Basics of Structures
6.3 Arrays of Structures

13 9.4 Timers

14 2.6 Type Conversion
9.11 Interrupts

2.7 Type Conversions

16 9.8 SPI Communications
17 9.7 I2C Communications

18 5.2 ? Operator 2.11 Conditional Expressions
19 4.6 Precedence of Operators 2.12 Precedence and Order Eval

Comprehensive list of PIC® MCU
Development tools and information www.mcuspace.com

Microchip Home Page www.microchip.com

CCS Compiler/Tools Home Page www.ccsinfo.com

CCS Compiler/Tools Software Update Page www.ccsinfo.com
click: Support → Downloads

C Compiler User Message Exchange www.ccsinfo.com/forum

Device Datasheets List www.ccsinfo.com
click: Support → Device Datasheets

C Compiler Technical Support support@ccsinfo.com

On The Web

CCS, Inc.

Other Development Tools

EMULATORS
The ICD used in this booklet uses two I/O pins on the chip to communicate with a small
debug program in the chip. This is a basic debug tool that takes up some of the chip’s
resources (I/O pins and memory). An emulator replaces the chip with a special connector
that connects to a unit that emulates the chip. The debugging works in a simulator manner
except that the chip has all of its normal resources, the debugger runs faster and there are
more debug features. For example an emulator typically will allow any number of breakpoints.
Some of the emulators can break on an external event like some signal on the target board
changing. Some emulators can break on an external event like some that were executed
before a breakpoint was reached. Emulators cost between $500 and $3000 depending on the
chips they cover and the features.

DEVICE PROGRAMMERS
The ICD can be used to program FLASH chips as was done in these exercises. A stand
alone device programmer may be used to program all the chips. These programmers will
use the .HEX fi le output from the compiler to do the programming. Many standard EEPROM
programmers do know how to program the Microchip parts. There are a large number of
Microchip only device programmers in the $100-$200 price range. Note that some chips
can be programmed once (OTP) and some parts need to be erased under a UV light before
they can be re-programmed (Windowed). CCS offers the Mach X which is a stand-alone
programmer and can be used as an in-circuit debugger.

PROTOTYPING BOARDS
There are a large number of Prototyping boards available from a number of sources.
Some have an ICD interface and others simply have a socket for a chip that is externally
programmed. Some boards have some advanced functionality on the board to help design
complex software. For example, CCS has a Prototyping board with a full 56K modem on
board and a TCP/IP stack chip ready to run internet applications such as an e-mail sending
program or a mini web server. Another Prototyping board from CCS has a USB interface chip,
making it easy to start developing USB application programs.

SIMULATORS
A simulator is a program that runs on the PC and pretends to be a microcontroller chip.
A simulator offers all the normal debug capability such as single stepping and looking at
variables, however there is no interaction with real hardware. This works well if you want to
test a math function but not so good if you want to test an interface to another chip. With the
availability of low cost tools, such as the ICD in this kit, there is less interest in simulators.
Microchip offers a free simulator that can be downloaded from their web site. Some other
vendors offer simulators as a part of their development packages.

CCS Programmer Control Software

The CCSLOAD software will work for all the CCS device programmers and replaces the
older ICD.EXE and MACHX.EXE software. The CCSLOAD software is stand-alone and
does not require any other software on the PC. CCSLOAD supports ICD-Sxx, ICD-Uxx,
Mach X, Load-n-Go, and PRIME8.

Powerful Command Line Options in Windows and Linux
· Specify operational settings at the execution level

 · Set-up software to perform, tasks like save, set target Vdd
 · Preset with operational or control settings for user
Easy to use Production Interface

· Simply point, click and program
 · Additions to HEX fi le organization include associating comments or a graphic image
 to a fi le to better ensure proper fi le selection for programming
 · Hands-Free mode auto programs each time a new target is connected to the programmer
 · PC audio cues indicate success and fail
Extensive Diagnostics

· Each target pin connection can be individually tested
 · Programming and debugging is tested with known good programs
 · Various PC driver tests to identify specifi c driver installation problems
Enhanced Security Options
 · Erase chips that failed programming
 · Verify protected code cannot be read after programming
 · File wide CRC checking
Automatic Serial Numbering Options
 · Program memory or Data EEPROM
 · Incremented, from a fi le list or by user prompt
 · Binary, ASCII string or UNICODE string
CCS IDE owners can use the CCSLOAD program with:
 · MPLAB®ICD 2/ICD 3
 · MPLAB®REAL ICE™

· All CCS programmers and debuggers
How to Get Started:
Step 1: Connect Programmer to PC and target board. Software will auto-detect the
 programmer and device.
Step 2: Select Hex File for target board.
Step 3: Select Test Target. Status bar will show current progress of the operation.
Step 4: Click “Write to Chip” to program the device.

Use the Diagnostics tab for troubleshooting or the ccsload.chm help fi le for additional assistance.

+
A5
A4
A3 A2

A1
A0
G

LED A4 POT A0

POT A1

LED A5

LED A2

Push
Button
A3

Power
9V DC

ICD
Connector

RS-232
A4, A5

Use for

programming

8 pin chips only

Debug using
ICD and

14 pin chip

Debug using
ICD and

8 pin socket

A4, A5
connected

to LEDs

Debug using
ICD and

8 pin socket

